CE 311K - McKinney

HW-8 Linear Equations

Problem 1. Given the system of equations
$0.77 x_{1}+6 x_{2}=14.25$
$1.2 x_{1}+1.7 x_{2}=20$
a. Solve graphically
b. On the basis of the graphical solution, what do you expect regarding the condition of the system?
c. Solve by elimination of unknowns.

Problem 2. Use Gauss Elimination to solve the following systems of linear equations. Show all steps in the computation.

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =6 \\
3 x_{1}+2 x_{2}+x_{3} & =10 \\
-2 x_{1}+3 x_{2}-2 x_{3} & =-2
\end{aligned}
$$

Problem 3. The series expansion for sine x is $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$. Starting with the simplest version, $\sin x \approx x$, add terms, one at a time in order to estimate $\sin \left(\frac{\pi}{2}\right)$. After each new term is added, compute the true error and the approximate relative error. Add terms until the absolute value of the approximate relative error falls below a stopping criterion of 0.001%. Use a spreadsheet.

Problem 4. Start from an initial guess of $x_{1}^{0}=x_{2}^{0}=x_{3}^{0}=0.0$, show the first 2 iterations of the Gauss-Seidel method for the solution of the system of equations in problem 3. Compute the error after the second iteration.

$$
\begin{aligned}
-12 x_{1}+x_{2}-8 x_{3} & =-80 \\
x_{1}-6 x_{2}+4 x_{3} & =13 \\
-2 x_{1}-x_{2}+10 x_{3} & =90
\end{aligned}
$$

