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Linear Equations 

Introduction 

In many engineering applications it is necessary to solve systems of linear equations.  

Frequently, the number of equations will be equal to the number of unknowns.  In such cases, we 

are usually able to solve for unique values of the variables.  If there are more variables than 

equations, we expect, in general, to obtain an infinite number of solutions.  Sometimes we have 

more equations than variables.  However, not all the equations may be independent, that is, some 

of them can be derived from others.  Under this circumstance, we try to find enough independent 

equations to be able to solve for all the variables. 

 

Consider the linear system of equations 

 

  

 

where A is an (n x n) matrix, b is a column vector of constants, called the right-hand-side, and x 

is the vector of (n) unknown solution values to be determined.  This system can be written out as  
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Performing the matrix multiplication and writing each equation out separately, we have 

 

  

 

This system can also be written in the following manner 

 

  

 

A formal way to obtain a solution using matrix algebra is to multiply each side of the equation by 

the inverse of A to yield 

 

  

 

or, since  

 

 

 

we have 

  

 

Thus, we have obtained the solution to the system of equations.  Unfortunately, this is not a very 

efficient way of solving the system of equations.  We will discuss more efficient ways in the 

following sections. 

 

Example.  Consider the following two equations in two unknowns: 
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Solve the first equation for x2 

 
 

 

This equation represents a straight line with an intercept of 7/2 and a slope of (-3/2).  

Now, solve the second equation for x2 

 
 

 

This is also a straight line, but with an intercept of 1 and a slope of (-4).  These lines are 

plotted in the following Figure.  The solution is the intersection of the two lines at x1 = -1, 

x2 = 5. 

 

Figure.  Graphical solution of two simultaneous linear equations. 
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Each linear equation  

  

  

 

represents a hyperplane in an n-dimensional Euclidean space (Rn), and the system of m equations  

 

 

or  

  

 

 represents m hyperplanes.  The solution of the system of equations is the intersection of all of 

the m hyperplanes, and can be 

• the empty set (no solution) 

• a point (unique solution) 

• a line (non-unique solution) 

• a plane (non-unique solution) 

 

Direct Methods for Solving Linear Systems  

Gauss Elimination 

 

The method of Gaussian Elimination is based on the approach to the solution of a pair of 

simultaneous equations whereby a multiple of one equation is subtracted from the other to 

eliminate one of the two unknowns (a forward elimination step).  The resulting equation is then 

solved for the remaining unknown, and its value is substituted back into the original equations to 

solve for the other (a back-substitution step).   
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Consider the two equations from the previous example: 

 

 

 

Divide the first equation by 3, multiply it by 4 and subtract it from the second equation, yielding 

the new system of equations 

 

 

 

Now we can solve the second equation for x2 = 5.  Substituting this back into the first equation, 

we have 

 

 

 

This approach can be extended to large sets of equations through the development of a 

systematic approach to forward elimination and back-substitution.  Consider the following set of 

n equations in n unknowns: 

 

 

 

The solution vector, x, for this system of equations remains unchanged if either of the following 

fundamental row operations is performed: 

 

(1)  Multiplication or division of any equation by a constant. 
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(2)  Replacement of any equation by the sum (or difference) of that equation and any other 

equation. 

 

Gauss elimination is a sequential application of these basic row operations.  To begin, (assuming 

that ) the first equation is multiplied by  and subtracted from the second equation, 

yielding the new system: 

 

 

 

The primes denote elements which have been changed from their original values, e.g., 

.  The first equation can now be multiplied by  and subtracted from 

the third equation, and so on, until the last equations is multiplied by  and subtracted 

from the last equation.  During these operations, the first row is termed the pivot row and  is 

termed the pivot element.  The entire first column below  has now been cleared (reduced) to 

zero and the set of equations appears as: 

 

 

 

The second row now becomes the pivot row and  the pivot element.  Multiplication of the 

second equation by  and subtraction from the third equation, and so on, until the last 
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equations is multiplied by  and subtracted from the last equation, clearing (reducing) the 

second column below the main diagonal to zero: 

 

 

 

Similar operations with the remaining rows as pivot rows finally yields 

 

 

 

The number of primes indicates the number of times that a row was modified in the forward 

elimination process.  The final equation in the last system of equations now yields directly the 

value of xn as 

 

Backing up, the previous equation is 

 

 

 

Since  is known from the previous, this value may be substituted in and the equation solved 

for  to yield 
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Repeated back substitution, moving upwards, yields one new unknown from each equation, and 

the unknown vector will have been completely determined when the top equation is solved for 

x1 .   

 

 

 

In general we can write 

 

 

 

A flow chart for Gauss elimination is shown in the following three Figures. 
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Figure.  Flowchart for Gauss elimination. 
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Flowchart for forward elimination. Flowchart for back substitution. 

 

One computational difficulty can arise with the standard Gauss elimination technique.  The pivot 

element in each row is the element on the main diagonal.  By the time any given row becomes 

the pivot row, the diagonal element in that row will have been modified from its original value, 

with the elements in the lower rows being recomputed the most times.  Under certain 

circumstances, the diagonal element can become very small in magnitude compared with the rest 

of the elements in the pivot row, as well as perhaps being quite inaccurate.  The computation step 

 

  

 

is the source of round-off error in the algorithm, since akj must be multiplied by aik / akk  which 

will be large if the pivot element akk is small relative to aik.  Improvements to the basic Gauss 

Elimination algorithm include careful selection of the pivot equation and pivot element.  The 
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problem can be effectively treated by interchanging columns of the matrix to shift the largest 

element (in magnitude) in the pivot row into the diagonal position.  This largest element then 

becomes the pivot element.  This operation is repeated with each new pivot row as necessary.  

Every column interchange also means an interchange of the locations of the unknowns in the 

solution vector.  The logic necessary to accomplish these column interchanges is rather complex 

and is implemented in most standard Gauss elimination computer codes. 

 

Example.  Use Gauss Elimination to solve 

 

 

 

Forward elimination:  Multiply the first equation by 3/2 and subtract this from the 

second, resulting in 

 

 

 

Multiply the first equation by 1/2 and subtract this from the third, to obtain 

 

  or 

 

 

Multiply the second equation by 5/2 and subtract this from the third, resulting in 
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Back substitution:  

 

 

This result is back substituted into the second equation to give 

 

 

 

Now, back substituting again 

 

 

This solution (x1=1, x2=2, x3=3) can be checked by substituting these values back into the 

original equations and comparing the left and right-hand sides of the equations. 

 

Iterative Methods for Solving Linear Systems 

 

Sometimes when solving engineering problems systems of equations will results which involve 

large numbers of equations and unknowns (100,000s to 1,000,000s).  For large systems of 

equations, Gauss Elimination is inefficient and prone to large roundoff errors.  In this case it is 

often more convenient to use a solution method that involves a sequential process of generating 

solutions that converge on the true solutions as the number of steps in the sequence increases. 

 

 

or 
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Iterative methods of solution, as distinct from direct methods such as Gauss Elimination, begin 

by rearranging the system of equations so that one unknown is isolated on the left-hand side of 

each equation 

 

 

 

In general, we have 

 

 

Now, if an initial guess  for all the unknowns was available, we could substitute 

these values into the right-hand side of the previous set of equations and compute an updated 

guess for the unknowns, .  There are several ways to accomplish this, depending on 

how you use the most recently computed guesses. 
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Jacobi Method 

In the Jacobi method, all of the values of the unknowns are updated before any of the new 

information is used in the calculations.  That is, starting with the initial guess , 

compute the next approximation of the solution as 

 

 

 

or, after k iterations of this process, we have 

 

 

 

More generally 
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Example.  Consider the system of equations 

 

 

 

A convenient initial guess is usually .  In this case we have 

 

 

 

or, after 1 iteration of the method we have 

 

 

 

Then, after 2 iterations of the method 
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Continuing this process ultimately leads, after 20 iterations, to  

 

 

 

 

Gauss Seidel Method 

When applying the Jacobi method, one may realize that information is being made available at 

each step of the algorithm.  That is the current approximation of one of the unknowns is available 

for use after each step.  This information could be used immediately in the calculation of the next 

unknown.  If we implement this, our method would look like 

 

 

 

or, after k iterations of this process, we have 
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More generally 

 

 

Example.  Consider again the system of equations 

 

 

 

A convenient initial guess is usually .  Using the Gauss Siedel 

method, we have 

 

 

 

or, after 1 iteration of the method, we have 

 

 

 

Then, after 2 iterations we have 
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Continuing this process ultimately leads, after 9 iterations, to  

 

 

 

Notice that this method converges to the solution much faster than the Jacobi method. 

 

 

Exercises 

1. Given the system of equations 
 

  

 
a. Solve graphically  
b. On the basis of the graphical solution, what do you expect regarding the condition of 

the system? 
c. Solve by elimination of unknowns. 

 

2.  Solve the following system of equations graphically: 
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3.  Use Gauss Elimination to solve the following systems of linear equations.  Show all steps in 
the computation.  Be sure to substitute your answers into the original equation to check your 
answers. 
 

a.   

 

b.   

 

c.   

 

d.   

 
4.  The following systems of equations is designed to determine the concentrations (the c’s in 
g/m

3
) in a series of coupled reactors as a function of the amount of mass input to each reactor 

(right-hand sides in g/day) 
 

 

 
Solve this system using the Gauss-Seidel method to a stopping tolerance of 5%.  Use an initial 
guess of c1 = c2 = c3 = 0. 
 

5.  The series expansion for sine x is  

 

 

 



CE311K 20 DCM  2/8/09 

Starting with the simplest version, , add terms, one at a time in order to estimate 

.  After each new term is added, compute the true error and the approximate relative 

error.  Add terms until the absolute value of the approximate relative error falls below a stopping 

criterion of 0.001%.  Use a spreadsheet. 

 

6. If x is approximated by  = 123.456 and the relative error is 0.1, then what is the possible 

range of values for x? 

 

7.  An engineer needs 4800, 5810, and 5690 m3 of sand, fine gravel, and coarse gravel, 
respectively, at a construction site.  There are three sources where these materials can be 
obtained and the composition of the material from these sources is 
 

 % Sand % Fine Gravel % Coarse Gravel 

Source 1 52 30 18 

Source 2 20 50 30 

Source 3 25 20 55 

 
How many cubic meters must be hauled from each source in order to meet the engineer’s needs? 
 

8.  Write the following systems of equations in matrix-vector form (Ax = b).  Find the transpose 

of the matrix A. 

 

 

 

9.  Solve the following system of equations by the Gauss-Siedel method.  Use an accuracy of e = 
0.001. 
 

 

 
10.  Solve the following system of equations by the Gauss-Siedel method.  Use an accuracy of e 
= 0.001. 
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11.  Start from an initial guess of , show the first 2 iterations of the Gauss 

Seidel method for the solution of this system of equations.  Compute the error after the second 
iteration.   

 

 

 
12.  What is meant by ill conditioning of a set of linear equations? 

 

The slopes of the equations are so similar that the computing method can not distinguish 
between the solutions. 

 

13.  The following figure shows three reactors linked by pipes.  As indicated, the rate of transfer 
of chemicals through each pipe is equal to a flow rate (Q, with units of cubic meters per second) 
multiplied by the concentration of the reactor from which the pipe originates (c, with units of 
milligrams per cubic meter).  If the system is at a steady state, the transfer into each reactor will 
balance the transfer out.  Develop mass balance equations for the reactors and use Gauss 
Elimination to solve the three simultaneous linear algrbraic equations for the unknown 
concentrations, c1, c2, and c3.  Show your work. 

 

 
 

Figure.  Three reactors linked by pipes.  The rate of mass transfer through each pipe is equal to 
the product of flow Q and concentration c of the reactor from which the flow originates. 

 
14.  Solve the following set of equations usgin the Gauss-Seidel iterative method 
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use the starting values x0 = 1, y0 = 1, and z0 = 1.  Show the computations for the first 2 iterations 

of the Gauss Seidel method.  Be sure to show all equations for the computations. 

 

15.  Given the system of equations 

 

 

 
Make 2 iteration of the solution of this system of equations by the Gauss Seidel method.  Show 

all steps in the computation.  Start from an initial guess of .  Compute the 

error after the second iteration. 
 

  

 


