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Regression 

Introduction 

 

Consider the nature of most experimental data.  Typically such data include noise due to many 

different effects.  The noisy data from an experiment might appear as shown in the following 

Table and Figure.  We assume that the x values are accurate.  Visual inspection of the data 

suggests a positive relationship between x and y = f(x), i.e., higher values of y are associated with 

higher values of x.  One strategy for deriving an approximating function for this data might be to 

try to fit the general trend of the data without necessarily matching the individual points.  A 

straight line could be used to generally characterize the trend in the data without passing through 

any particular point.  The line in Figure 1 has been sketched through the points.  Although this 

approach may work well in many cases, it does not provide us with any quantitative measure of 

how good the fit of the line is to the data.  We need a criterion with which to measure the 

goodness of fit of the line to the data.  One way to do this is to derive a curve that minimizes the 

discrepancy between the data points and the curve.  The technique for accomplishing this is 

called least-squares regression. 

 

Often data are available at discrete points and we require estimates at points between the discrete 

values.  In this section we will discuss techniques to fit curves to data in order to estimate 

intermediate, or fitted, values.   Two methods of curve fitting are generally considered, 

depending on the amount of error in the data.  When the data are known to be precise, the 

method of interpolation is used.  The primary purpose of interpolation is to provide information 
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between tabular data, and, as accurately as possible, to force the approximating function to 

assume exactly the value provided at each of the points where the data is supplied.  For 

significantly “noisy” data, a single curve representing the general trend of the data is derived by 

the method of least-squares regression. 

 

Table 1.  Noisy Data from an Experiment. 

i 1 2 3 4 5 

x 2.10 6.22 7.17 10.52 13.68 

f(x) 2.90 3.83 5.98 5.71 7.74 

 

 

 

Figure 1.  Noisy data from an experiment. 
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Linear Least Squares Regression 

 

Consider fitting a straight line to a set of data such as those shown the previous Table.  Let the 

data be represented by the set of n data points: 

 

 

 

The equation of a straight line through the data is 

 

  

 

where a0  is the vertical intercept and a1  is the slope of the line.  If the relationship between x 

and y were indeed truly linear and there was no noise in the data, then the slope and intercept 

could be estimated such that the line passed through all of the data points.  However, as can be 

seen from Figure 1, this is not the case.  These is a discrepancy, or residual, between the true 

value of y and the linear approximation .  This residual is denoted by e and is 

defined by  

 

  

 

The approximating function, the straight line, must now be chosen such that, in some sense, the 

discrepancy e is minimized over the entire range of x where the approximation is to be applied. 
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Figure 2.  Noisy data from an experiment with residuals. 

 

The sense in which e is minimized is clearly a vital factor in determining the character of the 

approximation.  We could minimize the maximum value of e for all data points.  However, this 

criterion is usually not an effective one to use in selecting a continuous functional approximation 

of noisy data, simply because it permits individual points -- which may be badly in error -- to 

exert overpowering influence on the approximating function.  That is, a single point can force the 

approximating function to shift drastically toward it in order to minimize the maximum error 

which would tend to occur at that point.  A much more favorable condition to apply to minimize 

e for this type of approximation is the least-squares criterion.   

 

If we denote the x coordinates at which data are available as xi, then the i-th residual ei is 

 

  
 

and if there are n such coordinates, then the sum of squared residuals over all the data points is 

 



CE311K 5 DCM  2/8/09 

  
 

In order to determine the values of the coefficients a0 and a1, we can minimize Sr.  The 

minimization is accomplished by setting the partial derivatives of Sr with respect to each 

coefficient equal to zero: 

 

  

 

or, dividing by -2 and summing term by term, we have 

 

  (1) 

 

Similarly, the second equation is 

 

  

 

or, dividing by -2 and summing term by term, we have 
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  (2) 

 

Now, Equations (1) and (2) represent of two simultaneous linear equations in two unknowns (a0  

and a1): 

 

 
 

 
 

These are called the normal equations. The solution to these equations is 

 

 

 

Example:  Given the following noisy data, fit a straight line to this data by using least squares. 

 

Table 2. Noisy Data from an Experiment. 

i 1 2 3 4 5 

x 2.10 6.22 7.17 10.52 13.68 

f(x) 2.90 3.83 5.98 5.71 7.74 

 

Each element of these equations can now be computed 
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The solution of the normal equations is  

 

 

 

The required straight line is thus 

 

  
 

Polynomial Regression 

 

Previously, we fit a straight line to noisy data  

 

 

 

using the least-squares criterion.  As we have seen, some data are poorly represented by a 

straight line and for these cases a curve is better suited to fit the data.  The most commonly used 

function for this purpose is the polynomial such as a parabola 

 

  
or a cubic 
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or in general an mth degree polynomial: 

 

  
 

where  are the constant coefficients of the polynomial.   

 

If the relationship between x and y were indeed truly m-th degree polynomial and there was no 

noise in the data, then the coefficients could be estimated such that the polynomial passed 

through all of the data points.  However, this is hardly ever the case.  As in the linear case, the 

discrepancy (residual) between the true value of y and the polynomial approximation is  

 

  

 

and if there are n such pairs of points (xi, yi), then the sum of squared residuals over all the data 

points is 

 

  
 

In order to determine the values of the coefficients , we can minimize .  The 

minimization is accomplished by setting the partial derivatives of  with respect to each 

coefficient equal to zero: 
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Now, dividing by -2 and summing term by term, we have 

 

  

 

Similarly, the second equation is 

 

  

 

Dividing by -2 and summing term by term, we have 

 

  

 

It can now be inferred that the complete set of simultaneous linear equations in the coefficients 

(the normal equations) of the polynomial is 
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Example:  Given the following data, choose the most suitable low order polynomial and fit it to 

this data using the least-squares criterion. 

 

Table 3. Data for polynomial fitting example. 

x 0 1.0 1.5 2.3 2.5 4.0 5.1 6.0 6.5 7.0 8.1 9.0 

y 0.2 0.8 2.5 2.5 3.5 4.3 3.0 5.0 3.5 2.4 1.3 2.0 

x 9.3 11.0 11.3 12.1 13.1 14.0 15.5 16.0 17.5 17.8 19.0 20.0 

y -0.3 -1.3 -3.0 -4.0 -4.9 -4.0 -5.2 -3.0 -3.5 -1.6 -1.4 -0.1 

 

 The data are plotted in the following Figure.  The data appear to have a maximum near x 

= 5 and a minimum near x = 15.  The lowest order polynomial which can reproduce such 

behavior is a cubic.  The least-squares equations (normal equations) for this set of data (n = 24) 

and for m = 3 are 
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Gauss elimination yields 

 

  
 
Thus the equations for the interpolating polynomial is 
 

  

 

Figure 3.  Plot of data for polynomial fitting example 
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Linearization of Nonlinear Relationships 

 

In order to apply the techniques of linear least-squares regression, the function whose 

coefficients are being approximated must be linear in the coefficients.  Many relationships 

among independent and dependent variables in engineering are not linear.  However, in many 

cases a transformation can be applied to the relationships to render them linear in the 

coefficients.  Consider an exponential relationship,  

 

  

 

where the base is the number e , and a  and b  are constants.  If we take the natural logarithm of 

both sides of the equation, we have 

 

  

which is a linear relationship between ln(y) and x.  The coefficients to be determined in this 

expression are ln(a) and b.  A power law relationship be written as 

 

  

 

If we take the natural logarithm of both sides of this equation, we have 

 

  

 

which is a linear relationship between ln(y) and ln(x).  Again, the coefficients to be determined in 

this expression are ln(a) and b.   

 

Example. Given the data in the following table, use the least-squares criterion to fit a 

function of the form  to these data.: 

 

i 1 2 3 4 5 6 
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x 1.2 2.8 4.3 5.4 6.8 7.9 

y 2.1 11.5 28.1 41.9 72.3 91.4 

 

The power law relationship is 

  

 

Take the natural logarithm of both sides  

  

 

which is a linear relationship between ln(y) and ln(x).  The coefficients to be determined are 

ln(A) and B.  Another way to look at this is 

  
 

which is a linear relationship between Y=ln(y) and X=ln(x).  The coefficients to be determined 

are a=ln(A) and B 
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Figure.  Plot of data on arithmetic and log-log axes. 

The normal equations are 

 

  

 

      

1.2 0.18 0.03 2.1 0.74 0.14 

2.8 1.03 1.06 11.5 2.44 2.51 

4.3 1.46 2.13 28.1 3.34 4.87 

5.4 1.69 2.84 41.9 3.74 6.3 

6.8 1.92 3.67 72.3 4.28 8.21 

7.9 2.07 4.27 91.4 4.52 9.33 

 



CE311K 15 DCM  2/8/09 

  

 

Plugging in the numerical values from the data table, the normal equations are  

 

  

 

Solution yields 

 

  

 

  

Example - Carbon Adsorption 

 

Adsorption involves the accumulation of dissolved substances at interfaces of and between 

material phases.  Adsorption may occur as the result of the attraction of a surface or interface for 

a chemical species, such as the adsorption of substances from water by activated carbon (Weber 

and DiGiano, 1996) as commonly used in home water filters.  Carbon is well known for its 

adsorptive properties.  Activated carbon is regularly used to remove taste and odors from 

drinking water since carbon has a unique ability to remove synthetic organic chemicals from 

water supplies. 

 

Adsorption is the process where molecules of a liquid or gas are attached to and then held at the 

surface of a solid.  Physical adsorption is the process whereby surface tension causes molecules 
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to be held at the surface of a solid.  Chemical adsorption occurs when a chemical reaction occurs 

to cause molecules to be held at the surface by chemical bonding.  Physical adsorption occurs on 

activated carbon.  The large surface area of the carbon makes it an excellent adsorbent material.  

Macropores in the surface of the activated carbon granules provide an entrance into the interior 

of the granual.  Adsorption requires three processes: (1) diffusion through a liquid phase to reach 

the carbon granule, (2) diffusion of molecules through macropores in the carbon granule to an 

adsorption site, and (3) adsorption of the molecule to the surface.  These processes occur at 

different rates for different molecules of different substances. 

 

Sorption studies are conducted by equilibrating known quantities of sorbent (say, carbon) with 

solutions of solute (the pollutant).  Plots of the resulting data relating the variation of solid-phase 

concentration, or amount of the solute (pollutant) sorbed per unit mass of solid (carbon), to the 

variation of the solution-phase concentration are termed sorption isotherms (Weber and 

DiGianno, 1996).  They are referred to as isotherms because the data are collected at constant 

temperature. 

 

To evaluate the effectiveness of using activated carbon to remove pollutants from water, the first 

step is to perform a liquid-phase adsorption isotherm test.  Data are generated by adding known 

weights of carbon to water containing a known concentration of pollutant.  The carbon-water 

mixture is mixed at constant temperature, then the carbon is removed by filtration.  The residual 

pollutant concentration in the water is measured and the amount of pollutant adsorbed on to the 

carbon is calculated.  This value if divided by the weight of carbon to determine the carbon 

loading (q).   

 

Several models have been developed to represent sorption isotherms mathematically.  These 

include: 

 

(1) Linear isotherm model 
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where q is the mass of pollutant sorbed per unit mass of carbon at equilibrium with a solution of 

pollutant concentration c, and K is called the distribution coefficient.  The distribution coefficient 

can be determined by fitting a straight line through the origin to the data. 

 

(2) Langmuir isotherm model 

 

 

 

where Q is the maximum adsorption capacity, and b is a rate constant, and  

 

(3) Freundlich isotherm model 

 

 

 

where, K is called the specific capacity, an indicator of sorption capacity at a specific pollutant 

concentration; n is a measure of the energy of the sorption reaction.  Both of the parameters can 

be determined fitting a straight line to the logarithmic transformation  

 

 

or 
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Table.   Adsorption data for a pollutant (phenol). 

 

c q logc logq 

2.8 77.8 0.45 1.89 

3.1 90.9 0.49 1.96 

12.1 132.7 1.08 2.12 

18 153.6 1.26 2.19 

30.4 171.4 1.48 2.23 

36.2 185.4 1.56 2.27 

48.5 196.2 1.69 2.29 

46.4 187.2 1.67 2.27 

63 193.4 1.80 2.29 

71.4 232.6 1.85 2.37 

78.1 204.4 1.89 2.31 

87.7 206.2 1.94 2.31 

102 210.8 2.01 2.32 

109 218 2.04 2.34 

102 230.5 2.01 2.36 

180 259.2 2.26 2.41 

273 271.4 2.44 2.43 

353 285.2 2.55 2.46 

434 294.3 2.64 2.47 

526 279.9 2.72 2.45 

600 268 2.78 2.43 
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Figure.  Phenol isotherm (arithmetic scales on axes). 
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Figure.  Phenol isotherm (logarithmic scales on axes). 

 

Using the Arithmetic axes: 

 

so 

K = 74.702, and n = 0.2289 

Using the Logarithmic axes: 

 

so 

logK = 1.8733  

or  

K = 101.6733 = 74.696 

and 

n = 0.2289 

Exercises 

1.  Use least-squares regression to fir a straight line to the following data: 
 

X 1 3 5 6 10 12 13 16 18 20 

Y 4 5 6 5 8 7 6 9 12 11 

 

2.  An example of a nonlinear model that is sometimes fitted to data is the saturation-growth-rate 

equation 

 

 

 

where a and b are constant coefficients.  This model is often used for population growth rate 

models under limiting conditions where the population y levels off (saturates) as x increases.  

This model can be linearized by inverting it to give 
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Thus a plot of Y = 1/y versus X = 1/x is linear, with a slope of m = b/a and an intercept of  s = 1/a. 

 

Fit a saturation-growth-rate model to 

 

x 0.75 2 2.5 4 6 8 8.5 

y 0.8 1.3 1.2 1.6 1.7 1.8 1.7 

 

Show your work.  Plot the data and the resulting equation. 

 

3.  Given the data 

 

X 5 10 15 20 25 30 35 40 45 50 

y 16 25 32 33 38 36 39 40 42 42 

 

Use least-squares regression to fit  

(a) a straight line;  

(b) a power equation;  

(c) a saturation-growth-rate equation; and  

(d) a parabola.   

 

Plot the data along with all the curves.  Is any one of the curves superior to the others? 

 

4.  Using least-squares regression, fit a parabola (second-order polynomial) to the data 

 

X 1 2 2.5 4 6 8 8.5 

Y 0.4 0.7 0.8 1.0 1.2 1.3 1.4 
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(a) Write the equation for your parabola? 
 

(b) What are the unknown coefficients in the equation from part (a)? 
(c) Write the 3 x 3 set of “normal” equations needed to compute the unknown coefficients using 

the least-squares method. 
(d) Solve for the coefficients using Gauss Elimination. 
 

5.  Using least-squares regression, fit a power function to the carbon adsorption isotherm data 

given in the following table.  Be sure to: 

 

a. Write the equation for your function? 
b. Write the set of “normal” equations needed to compute the unknown coefficients using the 

least-squares method. 
 

Table.   Adsorption data for phenol.  Ce is the equilibrium liquid phase concentration of phenol 

and qe is the GAC loading (mg/g) of phenol on carbon at equilibrium. 

 

Ce Qe     

(mg/L) (mg/g)     

2.8  77.8      

12.1  132.7      

30.4  171.4      

48.5  196.2      

63.0  193.4      

78.1  204.4      

102  210.8      

102  230.5      

273  271.4      

434  294.3      
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600 268.0     

 Sums =      

 

6.  Risk assessment studies subject animals to a lifetime exposure to a fixed amount of a toxic 

chemical.  The number of animals of a population of n(d) showing a response r(d) at dose d are 

counted.  Response means that the animal dies or develops a cancerous tumor.  The probability 

of a response is estimated as a frequency, , at chemical dose d. 

 

The following table shows the liver cancer responses of animals fed a daily dose of DDT. 

 

Group Dose Response Number of 

animals 

Lifetime risk 

probability 

estimate 

j    
 

1 0 4 111 0.036 

2 2 4 105 0.038 

3 10 11 124 0.089 

4 50 13 104 0.125 

5 250 60 90 0.667 

 

Using linear regression and these data, estimate the parameters of the Weibull model of the form 

 

         (1)  

 

a.  Show any transformation(s) that you must apply to the equation (1) to make it linear in the 
(transformed) parameters.  What is the final equation that you will use in the least squares 
regression? 

b.  What are the transformed values of the data that you must use in the linear regression? 
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Group     

j     

1     

2     

3     

4     

5     

 

c.  What are the normal equations that you must solve to find the values of the parameters of the 

linearized equation? 

d.  What are the numerical values which satisfy the normal equations? 

e.  What is the final form of the Weibull equation (1) using numerical values for the parameters. 

 

7.  Fit a saturation-growth-rate model  to the data 

 

       

I x y     

1 0.75 0.80     

2 2.00 1.30     

3 2.50 1.20     

4 4.00 1.60     

5 6.00 1.70     

6 8.00 1.80     

7 8.50 1.70     

Sum       

 

8.  Regression – Power Function.  An example of a nonlinear model that is sometimes fitted to 

data is the power function equation 
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where a and b are constant coefficients.  Fit a power function model to the data in the following 

table, that is, find the values of a and b.  Show your work. 

 

9.  Given the following data, fit a straight line to the data using the least-squares criterion:   

x      1.1    2.9    4.3    6.2 

y      50     43     28     25 

Show ALL steps in the computation.   

 

10.  Given the following data:   

x      1.2    2.8    4.3    5.4    6.8    7.9 

y      2.1    11.5   28.1   41.9   72.3   91.4 

  

Using the least-squares criterion, fit a power function of the form  to this data.  
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Interpolation 

Introduction 

Linear Interpolation  

 

If we assume that the graph between two points is a straight line, then we can use linear 

interpolation to find approximate values for a function between known pairs of points.  The 

familiar formula is 

 

 

 

where . 

 

Example.  (from Etter and Ingber, 2000). 

 

Table.  Data from an Experiment. 

time (s) Temp (deg F) 

0 0 

1 20 

2 60 

3 68 

4 77 

5 110 
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Figure.  Data from an experiment. 

 

If we interpolate the value for 2.6 seconds we have 

 

 

 

Lagrange Interpolating Polynomials 

 

Consider a series of points  where the  are unevenly spaced, and i can take on all integer 

values from 0 to n (there are n+1 points).  The Lagrange interpolating polynomial can be 

represented as  
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where 

 

  
 

where  represents the “product of.”   

Note that  

 

 

 

so that at the nodes (data points) the interpolation function is identical to the data points, that is, 

the function passes through each data point. 

 

The first-order Lagrange polynomial is 

 

 
where 

 
 

 
 

which is the same as the formula for linear interpolation discussed above.   
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The second order Lagrange polynomial is 

 

  
 

Example: Consider the following set of data: 

 

i 0 1 2 3 

xi 1 2 4 8 

f(xi) 1 3 7 11 

 

Suppose we wish to interpolate for  using a third order Lagrange polynomial.  The third 

order Lagrange polynomial is 

 

 

 

Substituting in the data values, we have 

 

 

 

Now, if we substitute in the value at which we want the interpolated value (7) we obtain 
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Figure.  Plot of Lagrange interpolation polynomial. 

 

Example. Use Lagrange interpolation to find f(2.9) using: 

 

i 0 1 2 3 4 

x 0 1 2 3.8 5 

y=f(x) 0 0.569 0.791 0.224 -0.185 

 

We have 5 data points, so use a fourth order Lagrange polynomial.  The fourth order Lagrange 

polynomial is 
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Exercises 

1.  Given the following data (which were generated using a polynomial function): 
 

X 1 2 3 5 6 

F(X) 4.75 4 5.25 19.75 36 

 

(a)  Calculate F(4) using Lagrange interpolating polynomials of order 1 through 4. 

(b)  Plot your results using Excel.   

( c)  What do your results indicate regarding the order of the polynomial used to generate the 

data in the table. 
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2.  Estimate the logarithm of 5 to the base 10 (log 5) using linear interpolation: 
 

 

 

(a)  Interpolate between log 4 = 0.60206 and log 6 = 0.7781513 

(b)  Interpolate between log 4.5 = 0.6532125 and log 5.5 = 0.7403627 

 

3.  Densities of sodium at three temperatures are given as follows: 

  Temperature Density 

I Ti (
0C) i (kg/m3) 

0 94 929 

1 205 902 

2 371 860 

a. Write the second-order Lagrange interpolation formula that fits these three data points. 

b. Find the density for T = 251 0C by using the Lagrange interpolation formula from part 
(a). 

 

4.  The data describing the storage volume to surface area relationship for Toktogul Reservoir on 

the Naryn River in the Central Asian Kyrgyz Republic (see Climbing Magazine, No 199, 

December, 2000) for an interesting story about these mountains) is given in the following table. 

Find the second-order Lagrange interpolation polynomial which agrees with the data in the table. 

Use it to estimate the value of surface area when the storage volume is 11.0 km3. Be sure to show 

your work. 
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StorageVolume Surface Area 

km
3
 10

6
 m

2
 

19.5 284 

14.19 241.6 

9.71 207.4 

5.92 168.8 

3 124.5 

 

5.  The density of sodium at three temperatures is given in the following table: 

 

Temperature Density 

Ti (
0C) i (kg/m3) 

94 929 

205 902 

371 860 

 

Find the density for T = 251 0C by using a second-order Lagrange interpolation formula. 

 

6.  Write the third-order Lagrange interpolation polynomial using the values in the table: 

 

X 0 2 3 4 

F(x) 7 11 28 63 

  

 


