Curve Fitting

CE 311 K - Introduction to Computer Methods
Daene C. McKinney

Nonlinear Regression

- Minimize the residual between the data points and the curve -- least-squares regression
 - Linear
 - $y_i = a_0 + a_1 x_i$
 - Quadratic
 - $y_i = a_0 + a_1 x_i + a_2 x_i^2$
 - ...
 - Exponential (base e)
 - $y_i = a e^{bx_i}$
 - Power (base x)
 - $y_i = a x_i^b$
 - Saturation-Growth
 - $y_i = a \frac{x_i}{b + x_i}$
Exponential Relationship

- If the relationship is an exponential function
 \[y_i = ae^{bx_i} \]
- To make it linear, take logarithm of both side
 \[\ln(y_i) = \ln(a) + bx_i \rightarrow Y_i = A + bx_i \]
- Now it’s a linear relation between \(Y (=\ln(y)) \) and \(x \)
- Need to estimate the values of \(A (=\ln(a)) \) and \(b \)

Power Relationship

- If the relationship is a power function
 \[y_i = ax_i^b \]
- To make it linear, take logarithm of both side
 \[\ln(y_i) = \ln(a) + b\ln(x_i) \rightarrow Y_i = A + bX_i \]
- Now it’s linear between \(Y (=\ln(y)) \) and \(X (=\ln(x)) \)
- Need to estimate the values of \(A (=\ln(a)) \) and \(b \)
Saturation-Growth Relationship

• If the relationship is a saturation-growth function
 \[y_i = \frac{ax_i}{b + x_i} \]

• To make it linear, invert the equation
 \[\frac{1}{y} = \frac{b}{x} + \frac{1}{a} \]

 \[Yi = A + BX_i \]

• Now it’s linear between \(Y = 1/y \) and \(X = 1/x \)

• Need to estimate the values of \(A = 1/a \) and \(B = b/a \)

Some Examples

• Quadratic curve \(y = a_0 + a_1x + a_2x^2 \)

 \(Q = a_0 + a_1H + a_2H^2 \)

• Flow rating curve:
 \- Q = measured discharge,
 \- H = stage (height) of water behind outlet

• Power curve \(y = ax^b \)

 \(c = aq^b \)

 \- Sediment transport:
 \- c = concentration of suspended sediment
 \- q = river discharge

 \- Carbon adsorption:
 \- q = mass of pollutant sorbed per unit mass of carbon,
 \- C = concentration of pollutant in solution
Example – Power Function

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>Log(x)</th>
<th>Log(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>2.1</td>
<td>0.18</td>
<td>0.74</td>
</tr>
<tr>
<td>2.8</td>
<td>11.5</td>
<td>1.03</td>
<td>2.44</td>
</tr>
<tr>
<td>4.3</td>
<td>28.1</td>
<td>1.46</td>
<td>3.34</td>
</tr>
<tr>
<td>5.4</td>
<td>41.9</td>
<td>1.69</td>
<td>3.74</td>
</tr>
<tr>
<td>6.8</td>
<td>72.3</td>
<td>1.92</td>
<td>4.28</td>
</tr>
<tr>
<td>7.9</td>
<td>91.4</td>
<td>2.07</td>
<td>4.52</td>
</tr>
</tbody>
</table>

Example – Power Function

- Using the log’s, not the original x’s and y’s

\[
\begin{bmatrix}
\frac{n}{\sum_{i=1}^{n} X_i} \\
\frac{n}{\sum_{i=1}^{n} X_i^2}
\end{bmatrix} \begin{bmatrix}
a \\
b
\end{bmatrix} = \begin{bmatrix}
\frac{5}{\sum_{i=1}^{n} Y_i} \\
\frac{5}{\sum_{i=1}^{n} X_i Y_i}
\end{bmatrix}
\]

\[
\begin{bmatrix}
6 \\
8.34
\end{bmatrix} \begin{bmatrix}
a \\
b
\end{bmatrix} = \begin{bmatrix}
19.1 \\
31.4
\end{bmatrix}
\]

\[
\begin{bmatrix}
\frac{5}{\sum_{i=1}^{n} X_i} \\
\frac{5}{\sum_{i=1}^{n} X_i^2}
\end{bmatrix} = \begin{bmatrix}
8.34 \\
14.0
\end{bmatrix}
\]

\[
\begin{bmatrix}
\frac{5}{\sum_{i=1}^{n} Y_i} \\
\frac{5}{\sum_{i=1}^{n} X_i Y_i}
\end{bmatrix} = \begin{bmatrix}
19.1 \\
31.4
\end{bmatrix}
\]

\[
\begin{bmatrix}
\frac{5}{\sum_{i=1}^{n} (x_i \ln(y_i))}
\end{bmatrix} = 31.4
\]