CE 311K
Introduction to Computer Methods

Daene McKinney

Introduction

www.ce.utexas.edu/prof/mckinney/ce311k/ce311k.html

Introduction

• Course Introduction and Housekeeping
• Computer Systems – Hardware and Software
• The Internet
• Program Planning
Course Objectives

- Introduce computer methods for the solution of civil engineering problems, including:
 - Intro to computer hardware and operating systems,
 - Organization of engineering problems for computer solution,
 - Selection of appropriate numerical solution software, methods, and algorithms,
 - Elementary numerical analysis of selected algorithms,
 - Writing, compiling, and executing Visual Basic programs
 - Presentation of problems and their solution,
 - Use of the WWW to communicate and retrieve information

Housekeeping

- Prerequisites
 - M408C, Calculus I, Co-requisite: M408D, Calculus II
- Text
 - Required:
 - Microsoft Visual Studio Express Edition with VB2008 (CD in back of the text or download from the web):
 - Strongly Suggested:
 - Chapra, S. & R. Canale, Numerical Methods for Engineers
- Homework
 - Due at beginning of lecture, due date on web site
 - Lab assignments due next lab period
 - Late homework penalized 50% per day late
Housekeeping

- **Grading**
 - A >= 90, B >= 80, C >= 70, etc
 - Exams: 50% (2 at 25% each; open book & notes)
 - Project: 20%
 - Laboratory: 20%
 - Homework: 10%

- **Exams**
 - 2 exams
 - No makeups
 - Dates: on web site
 - No Final – Project Presentation and Report Instead

Projects

- Enable you to explore in-depth some aspect of Civil, Architectural, or Environmental Engineering of interest to **you**
- Provide experience in
 - use of computer methods to solve engineering problems
 - formulation, execution and presentation of an engineering investigation
 - team effort to produce a project, report and presentation that is informative to you and your classmates
Project Steps

- Students - sign up for an area of interest
 - Architectural Engineering (ArE) – www.caee.utexas.edu/areareasofpractice/index.cfm
 - Structural Engineering
 - Building Energy and Environments
 - Construction Materials Engineering
 - Civil Engineering (CE) – www.caee.utexas.edu/ceareasofpractice/index.cfm
 - Construction Engineering and Project Management (CEPM)
 - Environmental Engineering (ENV)
 - Geotechnical Engineering (GEO)
 - Materials: Mechanics and Construction (MAT)
 - Structures (STR)
 - Transportation (TRAN)
 - Water Resources Engineering (WR)

Project Steps

- Instructor - prepares teams in areas of interest
- Teams
 - Select project topic in their area and prepare proposal
 - Work on project in teams
 - Present final project in class
 - Submit final report
Computing Systems

• A **computer** is a machine designed to perform operations specified with a set of instructions called a **program**.

• **Hardware** refers to the computer equipment.
 – keyboard, mouse, terminal, hard disk, printer

• **Software** refers to the programs that describe the steps we want the computer to perform.

Computer Hardware

• CPU - Central processing unit
• ROM - Read only memory
 – Power off, data saved
• RAM - Random access memory
 – Power off, data lost
Computer Systems

- First Generation
 - 1940-1950 Vacuum tubes
- Second Generation
 - 1950-1964 Transistors
- Third Generation
 - 1964-1971 Integrated Circuits
- Fourth Generation
 - 1971-present Microprocessors
- Fifth Generation
 - Future Massively Parallel
- Cloud
 - Current Internet-based

www.wordiq.com/definition/History_of_computing_hardware

Computer Software

- Operating System
 - interface with the user
 - unix, windows, linux, ...
- Software Tools
 - word processors (MicrosoftWord, WordPerfect, ...)
 - spreadsheet programs (Excel, Lotus1-2-3, ...)
 - mathematical computation tools (MATLAB, MathCAD, ...)
- Computer Languages
 - machine language
 - assembly language
 - binary language
 - high level languages
 - (C, C++, FORTRAN, VB, java)
- Web Applications
 - Search engines
 - Online shopping
 - VOIP

Reed Harvard UT Stanford
The Internet

- International computer network connecting everybody
- Computer networking and communications technology
 - i.e., wires and routers, those things that connect computers
 - TCP/IP (Transmission Control Protocol/Internet Protocol) directs the flow of data between computers on the internet
- The Internet allows you to communicate with computer users around town and around the world

World Wide Web (WWW)

- An open approach to information sharing
- Providing a distributed "hyper"-media system to easily access information spread across the world
- "Hyper"-text
 - A way to link and access information of various kinds as a web of nodes in which a user can browse at will
 - Operation of the Web relies on hypertext to interact with users
 - Enables you to read and navigate information in a nonlinear way based on what you want to know
 - Browser - programs which provide access to hypertext docs on the web
- HTML (Hypertext Markup Language)
 - Formatting standard for hypertext documents
How big is the internet?

- 1830 million: individuals will use the Internet in 2010
- > 1 trillion web pages
- 5 million Tera bytes of data
- > 500 million use the Internet at least once a week
- Google Zeitgeist Search Queries: 2009
 - Fastest Rising (Global)
 - michael jackson
 - Facebook
 - Tuenti
 - Twitter
 - Sanalika
 - new moon
 - lady gaga
 - windows 7
 - dantri.com.vn
 - torpedo gratis

Model Building Process

- Problem identification
 - Important elements to be modeled
 - Relations and interactions between them
 - Degree of accuracy
- Conceptualization and development
 - Mathematical description
 - Type of model
 - Numerical method - computer code
 - Grid, boundary & initial conditions
- Calibration
 - Estimate model parameters
 - Model outputs compared with actual outputs
 - Parameters adjusted until the values agree
- Verification
 - Independent set of input data used
 - Results compared with measured outputs
Programming Process

Algorithm Design
(underlying logic of program)

Program Composition

Debug & test
(error free & reliable)

Program Documentation

Program Maintenance

Grace M. Hopper

First “Bug”

Algorithms

• Example:
 – Write a letter.
 – To mail it, you must decide how much postage to put on the envelope.

• Rule of Thumb: One stamp for every 5 sheets of paper.

• Algorithm: Step-by-Step procedure for solving a problem
 1. Input = Number of sheets of paper in the letter
 2. Divide Sheets by 5. Round up to the next highest whole number
 3. Output = Number of Stamps

INPUT (16) → Processing → Output (4)
Composing a Computer Program

- **Programmer**
 - Writes program in **source code** (VB or other language)
- **Compiler**
 - Converts source code to **machine language** code
- **Linker**
 - Combines machine language with libraries & converts them to an **executable module**
- **Interpreter**
 - Converts source code to machine language and executes one line at a time

6 Elements of Programming

- 6 things you need to program in any language:
 1. Variables
 2. Input/Output
 3. Selection
 4. Subprograms
 5. Repetition
 6. Arrays
- **VB**
- **C, C++, C#**
- **FORTRAN**
- **Pascal**
- **Cobol**
- **Java, J++**
- **YouNameItLanguage**
Summary

• Course Introduction and Housekeeping
• Computer Systems – Hardware and Software
• The Internet
• Program Planning