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Abstract 
First- and second-order incident and diffracted wave effects are studied to determine the 
influence of the motions of a semi-submersible on the instantaneous air gap.  Statistics of 
the air gap response are estimated with different modeling assumptions.  In these studies, 
a single field point is studied – one at the geometric center of the semi-submersible. 

Next, a comparison of the air gap at different locations is studied by examining 
response statistics at different field points for the semi-submersible.  These include 
locations close to columns of the four-columned semi-submersible.  Analytical 
predictions, including first- and second-order diffracted wave effects, are compared with 
wave tank measurements at several locations.  In particular, air gap response statistics 
such as the root-mean-square and the 3-hour median extreme are compared. 
 
Background 
The air gap response, and potential deck impact, of ocean structures under random waves 
is of considerable interest.  Air gap modeling is particularly complicated in the case of 
floaters because of their large volume, and the resulting effects of wave diffraction and 
radiation.  These give rise to two distinct effects: (1) global forces and resulting motions 
are significantly affected by diffraction effects; and (2) local wave elevation modeling 
can also be considerably influenced by diffraction, particularly at locations underneath 
the deck and/or near a major column.  Both effects are important in air gap prediction: we 
need to know how high the waves rise (item 2 above), and how low the deck translates 
vertically (due to net heave and pitch) at a given point to meet the waves.  Moreover, 
effects (1) and (2) are correlated in time, as they result from the same underlying incident 
wave excitation process. 

We focus here on analytical diffraction models of air gap response, and its resulting 
stochastic nature and numerical predictions under random wave excitation.  Attention is 
focused on a semi-submersible platform, for which both slow-drift motions (heave/pitch) 
and diffraction effects are potentially significant.  Various effects are studied separately: 
e.g., wave forces on a fixed (locked-down) structure, the effect of structural motions on 
air gap response, and finally, the effect of different local wave elevation models in step 2.  
For reference, a complete second-order diffraction model is formulated and studied. 
 
Response Statistics: Moments and Extremes 
In modeling floating structures, it is common to employ Volterra series to describe the 
response (output) of these nonlinear systems.  The nonlinear system is defined in terms of 
first- and second-order transfer functions.  For floating structures, these transfer functions 
are obtained from first- and second-order wave diffraction analysis programs such as 
WAMIT (e.g., WAMIT, 1995). 

We start by defining a sea surface elevation, η(t), in terms of a sum of sinusoidal 
components at N distinct frequencies and a wave spectrum, Sη(ω) as follows: 
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Any response quantity, x(t), may then be described by a second-order Volterra 
series representation as follows: 
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where x1(t), x2-(t), and x2+(t) are the first-order, second-order difference-frequency and 
second-order sum-frequency contributions, respectively, to the response.  We can write 
each of these components in terms of transfer functions.  Thus, we have: 
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We will characterize the physical response model and estimate response extremes 
using the first four statistical moments of the response.  One can then express x(t) in 
terms of mutually independent standard Gaussian processes, uj(t).  Thus, we have: 
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The coefficients cj and λj are obtained by solving an eigenvalue problem 
involving the transfer functions and input power spectral densities (see Kac and Seigert, 
1947).  To represent the four statistical moments, we will employ the mean (mx), standard 
deviation (σx), and the dimensionless coefficients of skewness (α3x) and kurtosis (α4x): 
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In terms of cj and λj, these first four moments may be given as follows: 
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Once these moments are found, the response process x(t) may be related to a standard 
Gaussian process u(t) using a Hermite transformation model (Winterstein, 1998): 
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where c3, c4 and κ are coefficients that can be estimated in terms of α3x and α4x. 
The p-fractile extreme response in a seastate duration T can then be estimated 

from Eq. (7) taking u as the corresponding Gaussian p-fractile extreme: 
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where ν0 is the average response frequency. 
 
Air Gap Response 

We start by defining the net wave elevation, ηNET, with respect to a fixed origin.  
Then, if at a field point of interest, (x,y), δ(t) denotes the net vertical displacement of the 
structure, the relative wave elevation r(t) measured with respect to the moving structure 
may be given by: 
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implying that δ(t) is given in terms of the heave (ξ3), roll (ξ4), and pitch ((ξ5), motions.  
The available air gap a(t) is the difference between the still-water air gap and r(t): 
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The instantaneous net wave elevation, ηNET(t), in Eq. (9) is a result of both the incident 
waves that would occur if the structure were not present, and the diffracted waves that 
arise because of the presence of the structure that alters the flow field. 
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In Eq. (11), we see that in our second-order model, we need to represent the net wave 
elevation as made up of first- and second-order effects due to both incident and diffracted 
waves.  The first-order incident wave η1,I is modeled as a stationary Gaussian process, 
and consistent values of η1,D , η2,I , and η2,D are calculated from hydrodynamic theory. 

The methodology using Volterra series models and moment-based extreme 
estimation has been implemented in a post-processing routine (Ude et al., 1996) that uses 
first- and second-order force transfer functions and added mass and damping.  The 
transfer functions combined with stiffness, damping, and inertia properties of the 
structure provide first- and second-order transfer functions to any response quantity, x(t). 

In computing the air gap response, we need to simultaneously include both 
second-order sum-frequency effects (on the wave surface), and second-order difference-
frequency effects (on slow drift motions).  The air gap response, as described by Eqs. (9) 
through (11) above, has been implemented in the formulation based on second-order 
Volterra series and moment-based extremes models (Manuel and Winterstein, 1998). 
 
Platform Description 
The structure chosen for the numerical studies is the Troll semi-submersible. Figure 1 
shows a plan view of the platform that has four columns and plan dimensions, 100m x 
100m.  The still-water air gap is 25 meters and the mean water depth is 325 meters.  
Measurements of air gap were made at seven different field point locations.  At these 
same locations, WAMIT diffraction analyses were performed for waves with different 
headings and with wave periods ranging from 7.4 to 20.0 seconds.  The seven field 
points’  locations are indicated on Figure 1. 
 
Alternative Modeling Options 
We are interested in studying the influence of alternative modeling options in describing 
the relative wave.  We will study the air gap at field point no. 1 and will consider a 3-
hour seastate characterized by head seas and with a significant wave height of 10.6 
meters and a spectral peak period of 12.5 seconds. 

To isolate the effects of incident and diffracted waves of first- and second-order, 
and the effect of net vertical motion, we consider several different cases.  Table 1 
summarizes the response statistics for the Troll submersible in each of the cases defined.  
Contributions to the response statistics from the first-order effects alone and from the 
sum of first- and second-order contributions are included.  From the table, the following 
findings may be noted as we move across the various cases: 
Case 0 Only first-order incident waves (η1,I) included; structure locked down (i.e., 
motions prevented, δ = 0).  Because this case includes only first-order incident waves, the 
net wave elevation is seen to be Gaussian.  Also, the rms response (2.65 meters) is equal 
to one-fourth of the significant wave height (10.6 meters).  The Gaussian character is also 
confirmed by the peak factor on the median extreme of 3.8 (see Eq. 3.8 with p = 0.5, ν0T 
= 1080) as expected for a 3-hour seastate. 
Case 1 Only first- and second-order incident waves (η1,I  and η2,I) included; structure 
locked down.  Case 1 includes a second-order Stokes incident wave process, which 
causes the net wave elevation to be non-Gaussian and positively skewed.  The second-
order process provides a small contribution to the total response: its rms is only 14% of 
that of the first-order process.  The peak factor of the total process is 4.1. 



Case 2 First-order incident and diffracted waves (η1,I  and η1,D), second-order incident 
waves (η2,I) included; structure locked down.  Addition of the first-order diffracted waves 
in Case 2 has the effect of raising the rms of the first-order process by 23% and the 
median extreme by 20%.  The peak factor of the total process response is 3.7 (i.e., the 
total process is more Gaussian than in Case 1 due to the larger relative contribution of the 
first-order effects). 
Case 3 First- and second-order incident and diffracted waves (η1,I , η1,D, η2,I , and η2,D) 
included; structure locked down.  Addition of second-order diffracted waves in Case 3 
causes a large increase in response, most notably in its extreme levels.  In particular, the 
rms level changes only from 3.27m to 3.50m, while the peak factor grows from 3.7 to 
5.5.  This enhanced peak factor is due to the marked non-Gaussian behavior predicted in 
this case: the skewness value is found to be 0.54, and the kurtosis value, 4.12. 
Heave Structure’s heave motion (ξ3) studied.  Again, we see that nonlinear effects (here, 
the effect of difference-frequency slow-drift motions) only mildly influence rms values 
(0.78m increases only to 0.79m), but more notably affect non-Gaussian behavior 
(skewness value of 0.21). 
Base First- and second-order incident and diffracted waves (η1,I , η1,D, η2,I  and η2,D) 
included; structure permitted to move (i.e., δ ≠ 0).  Finally, the base case results predict 
the relative wave response for a structure permitted to move.  These results combine our 
"best" model of the wave elevation (including second-order diffraction effects as in Case 
3) with our correlated model of associated vertical motions.  The results show strong non-
Gaussian behavior: skewness of 0.54, kurtosis of 4.55, and peak factor of 6.1.  In view of 
their similarity with Case 3 values, these strongly non-Gaussian effects appear to be due 
to the presence of second-order diffracted waves, and are not weakened when structural 
motions are included.  Of course, by permitting the structure to move with the waves, the 
relative wave response is reduced as compared with the locked-down structure in Case 3. 
 
Analytical Predictions versus Wave Tank Test Data 
We next compare analytical predictions with model test results.  Four different seastates 
are considered: (Hs , Tp) 
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= 14.0s).  Results are shown below for three field points, including again the platform 
mid-point and two other locations nearer to columns. 

From Table 2, we see that second-order diffraction is found to (1) only 
moderately increase the rms response, but (2) markedly increase peak factors and 
extremes.  Thus, even if second-order effects in the incident wave are retained, 
unconservative air gap predictions may result if second-order diffraction effects are 
neglected.  Particularly strong non-Gaussian behavior is predicted at the platform mid-
point, as compared with predictions corresponding to other points nearer a column. 

Finally, we compare the model predictions with the observed wave tank statistics, 
shown in the final two columns of Table 2.  We first note that these observed extremes 
(peak factors) each arise from a single 3-hour test, and are therefore rather noisy 
estimates of the median values across many similar 3-hour conditions.  Still, these results 
suggest that ignoring second-order diffraction effects could lead to underestimation of 
response extremes.  When second-order diffraction effects are included, peak factors are 
no longer systematically underestimated but agreement with observations remains 
imperfect.  At the platform midpoint, for instance, the predictions appear "too nonlinear."  
Nonetheless, these results suggest that nonlinear diffraction effects can be important, and 
should be studied further.  We believe that the general statistical models presented here, 
which estimate extremes from a limited set of statistical moments, offer an efficient 
approach to assess the impact of various nonlinear models on extreme response levels. 
 
 



Conclusions 
A methodology has been presented for describing the air gap response for floating 
structures.  The importance of incident waves relative to diffracted waves of both first 
and second order has been studied.  For the Troll semi-submersible, a full second-order 
analysis (including incident and diffracted waves up to second order) is necessary; it is 
unconservative to neglect the second-order diffracted waves. 

In comparing the different field point locations, important non-Gaussian effects 
are observed that differ slightly depending on the proximity to a column.  The air gap at 
the center of the platform exhibited the greatest non-Gaussian character.  This non-
Gaussian character is largely a result of second-order diffracted waves. 
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Figure 1.  Plan view of Troll semi-submersible showing field points studied. 



Type 
of Run Response Mean 

(m) 
Std. Dev 

(m) Skewness Kurtosis Median 
Extreme (m) 

Peak 
Factor 

Case 0 TOTAL 0.00 2.65 0.00 3.00 10.08 (-10.08) 3.8 
Case 1 1st-order 0.00 2.65 0.00 3.00 10.08 (-10.08)  

 TOTAL 0.00 2.70 0.20 3.06 11.17 (-8.91) 4.1 
Case 2 1st-order 0.00 3.25 0.00 3.00 12.08 (-12.08)  

 TOTAL 0.00 3.27 0.09 3.04 12.11 (-11.05) 3.7 
Case 3 1st-order 0.00 3.25 0.00 3.00 12.08 (-12.08)  

 TOTAL 0.00 3.50 0.54 4.12 19.23 (-12.54) 5.5 
Heave 1st-order 0.00 0.78 0.00 3.00 2.81 (-2.81)  

 TOTAL 0.07 0.79 0.21 3.13 3.34 (-2.54) 4.1 
Base 1st-order 0.00 2.52 0.00 3.00 9.44 (-9.44)  

 TOTAL -0.07 2.85 0.50 4.55 17.18 (-12.38) 6.1 
 

Table 1  Air Gap Response Statistics for Cases involving different Modeling Options 
 
 
 
 
 
 

 
Field Point 1 (at center) 

Analysis w/o 2nd-order 
diff. TF 

Analysis w/ 2nd-order 
diff. TF 

Wave Tank 
Tests 

Hs 
(m) 

Tp 
(s) σ (m) PF σ (m) PF σ (m) PF 

10.6 12.5 2.55 3.7 2.85 6.0 - - 
12.6 13.5 2.96 3.8 3.37 6.2 2.78 6.5 
13.3 13.0 3.19 3.8 3.71 6.4 - - 
14.5 14.0 3.34 3.8 3.89 6.4 3.20 4.3 

 
Field Point 5 (on diagonal @ 24,24) 

Analysis w/o 2nd-order 
diff. TF 

Analysis w/ 2nd-order 
diff. TF 

Wave Tank 
Tests 

Hs 
(m) 

Tp 
(s) σ (m) PF σ (m) PF σ (m) PF 

10.6 12.5 3.16 4.1 3.26 5.3 - - 
12.6 13.5 3.53 4.1 3.68 5.6 3.56 4.6 
13.3 13.0 3.87 4.2 4.05 5.7 - - 
14.5 14.0 3.93 4.2 4.15 5.8 4.10 5.1 

 
Field Point 6 (in front of a column) 

Analysis w/o 2nd-order 
diff. TF 

Analysis w/ 2nd-order 
diff. TF 

Wave Tank 
Tests 

Hs 
(m) 

Tp 
(s) σ (m) PF σ (m) PF σ (m) PF 

10.6 12.5 3.62 3.7 3.66 3.7 - - 
12.6 13.5 3.78 3.7 3.85 4.1 2.69 6.3 
13.3 13.0 4.29 3.7 4.37 4.0 - - 
14.5 14.0 4.13 3.8 4.24 4.4 3.17 5.7 

 
Table 2  Response Statistics (RMS Response and Peak Factor on Median Extreme in 
3 hours) – Analytical Predictions versus Wave Tank Test Data at 3 Field Points 


