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When interest is in establishing extreme loads for wind turbines, it is common to either carry 
out extensive simulation studies or undertake a field measurement campaign. At the Blyth 
offshore wind farm in the UK, a 2 MW wind turbine was instrumented, and environment 
and load data were obtained in a previous study. Here, we discuss how such data, even 
though very limited, may be used along with parametric models to establish extreme loads 
associated with return periods on the order of 20–50 years. The environmental character-
istics at the Blyth site are such that wind and waves are of primary importance. Distribu-
tions for the extreme mudline bending moment are established using parametric models. 
Long-term loads are derived for different wind regimes possible at the site and the results 
are compared. Using bootstrap techniques, the effect of variability in the parameters for 
load distribution is investigated. Copyright © 2008 John Wiley & Sons, Ltd.
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Introduction
Our objective here is to estimate extreme loads for an offshore wind turbine for which the environmental and 
load data are available from fi eld measurements. Using a probabilistic approach, we will estimate long-term 
loads associated with a target failure probability, or equivalently, a prescribed service life for the turbine. In 
the probabilistic approach, variables describing the wind and wave environment as well as the turbine response 
are modelled as random variables whose probabilistic distributions need to be established. In general, the 
required data may be obtained either from simulations with a turbine model or from the fi eld measurements 
on the turbine. While data obtained from the simulations can ensure the inclusion of a wide range of environ-
mental input variables and resulting response statistics, simulation models are limited by how closely they can 
represent the wind turbine. Data obtained from full-scale fi eld measurements, on the other hand, provide a true 
representation of the turbine response subjected to observed environmental conditions. Field data, however, 
can be ‘limited’ in the sense that, when available, they are generally recorded only for a fi nite duration of time, 
and may not cover all possible environmental conditions expected to occur over the life of the turbine. There-
fore, when using limited fi eld data, statistical parametric or non-parametric techniques are often used to 
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extrapolate the loads from observed events to loads associated with prescribed safety levels. Statistical extrap-
olation techniques have been used to predict both long-term extreme and fatigue loads for wind turbines. 
Examples of such studies include those by Moriarty et al.9 and Fitzwater and Winterstein8. It is worth noting 
that fi eld data available from campaigns, such as the one reported on here, may be used to validate simulation 
models that form the basis for design load computations. In the present case, neither the simulation studies for 
the test turbine nor the simulation models were available; hence, no validation studies could be carried out.

In the present study, we use statistical load extrapolation procedures to estimate long-term loads using limited 
fi eld data recorded at an offshore wind turbine. We focus our attention on the bending moment at the mudline 
as the load variable of interest. The turbine under consideration is an instrumented 2 MW wind turbine at the 
Blyth wind farm, which is located about 1 km off the northeast coast of England, and for which data were 
recorded for about 16 months. Key features of the site pertinent to the present study include contrasting char-
acteristics of the environment and response characteristics associated with winds blowing from the shore to 
the sea versus those associated with winds blowing from the sea to the shore. In addition, the turbine located 
in shallow water is likely subjected to breaking waves. We will discuss the possible importance of these 
features in estimation of long-term loads using the statistical extrapolation procedure.

Statistical Load Extrapolation
In reliability-based design of wind turbines, one is required to estimate extreme loads associated with a pre-
scribed level of safety, e.g. a required service life. The appropriate long-term load, lT, corresponding to a service 
life of T years (T would ordinarily be on the order of 20 years for an offshore wind turbine) needs to be deter-
mined by consideration of the probabilistic distribution for all important environmental random variables, as 
well as for the turbine load conditional on the environment. We assume here that the environment for the 
turbine under consideration is defi ned by the 10 min mean wind speed at the turbine nacelle, denoted by the 
random variable V, and the signifi cant wave height, denoted by Hs. The variables Hs and V are modelled as 
jointly distributed random variables. The turbine load of interest, L, depends on V and Hs, and is thus an implicit 
function of the environmental random variables. For the target failure probability, PT, associated with the 
service life, T, we are interested in estimating lT such that:
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where fV,Hs
(v, h) is the joint probability density function of the environmental random variables. Equation (1) 

makes it possible to estimate the long-term probability of exceedance of any specifi ed load by integrating 
short-term load distributions conditional on V and Hs, with the relative likelihood of all (V, Hs) pairs. As such, 
the form of equation (1) enables one to directly compute the probability of exceedance, or the failure probabil-
ity for a given load level. Our purpose, however, is to estimate the long-term load associated with a given 
exceedance probability. To this end, we will construct the probability of load exceedance curve for various 
assumed load levels; then, using this exceedance probability curve that represents the long-term distribution 
of loads, we can simply read off the long-term load associated with the prescribed level of safety or the target 
exceedance probability.

In order to be able to use equation (1), one needs to establish the joint distribution for wind speed and wave 
height as well as the conditional distribution of the load given V and Hs. We will use parametric probability 
distributions to describe all the random variables. To estimate the parameters of these distributions, we will 
use the fi eld data recorded at the Blyth site. Since the fi eld data are limited, the parametric distributions may 
not accurately represent true conditions at the site. We will address details regarding statistical uncertainty in 
long-term load estimation because of limited fi eld data by making use of bootstrap techniques.1 Next, we briefl y 
discuss the Blyth site and the recorded data, and then present the distributions of the random variables of 
interest in this study.
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Blyth Site
The Blyth project is an experimental wind farm consisting of two 2 MW Vestas V66 wind turbines. The Blyth 
site is located on the north-east coast of England, off the Northumberland shore. The wind turbines are located 
approximately 1 km from the shoreline. The mean water depth at the instrumented turbine varies between a 
Lowest Astronomical Tide (LAT) level of 6 m and a Mean High Water Springs level of 11 m. The average 
water depth at the turbine location is approximately 9 m. One of the two turbines at Blyth was instrumented 
as part of a research project funded by the European Commission; it has a hub height of 62 m above the LAT 
level and a blade diameter of 66 m. The turbines are located on a sharply sloping submerged rock, known as 
the ‘North Spit’, in rock–socket type foundations. This local bathymetry results in rather large breaking waves 
at the turbine.

Field measurements were collected for 16 months between October 2001 and January 2003, thus covering 
more than one full winter season. While almost 64 000 data sets or 10 min samples were continuously recorded, 
only about 2300 data sets (equivalent to only about 16 days) were found to be usable after bad or missing data 
were discarded. Measured data included wind speed and direction at the nacelle, sea surface elevation and 
bending moments at several vertical stations along the tower and the pile. One of these stations—the mudline 
bending moment—is our load variable of interest here. The nacelle wind speed data were calibrated such that 
the mean wind speed measured at the nacelle was approximately equal to the mean free wind speed measured 
at a similar elevation at a nearby shore location. The wave climate data were measured using a wave radar 
system located at the entrance platform of the turbine, 11.7 m above the LAT line. Additional details 
regarding the data and measurement system may be found in Camp et al.2

Time series data in 10 min segments were sampled at 40 Hz, and the minimum, maximum, mean and stan-
dard deviation for each channel were recorded as part of the statistics comprising the ‘summary’ data sets. 
From these summary data sets, we focus our attention on the mean wind speed, V, at the nacelle, and the 
signifi cant wave height, Hs, obtained from the sea surface elevation, as the environment variables of interest. 
For the load variable, we consider the absolute maximum (the larger of the maximum positive and negative 
values) of the mudline bending moment, M, in one of two available orthogonal components.

Description of Environment And Response
Of central importance in the evaluation of the exceedance probability, using equation (1), is the estimation 
of distributions of the random variables defi ning the environment and the response conditional on the 
environment. We discuss next our procedure for deriving these distributions from the available fi eld data at 
the Blyth site.

Environment Random Variables
We assume that the environment at the Blyth site is adequately described by the mean wind speed, V, and the 
signifi cant wave height, Hs. Both of these variables are based on 10 min statistics. Before we present the dis-
tributions for these variables, we believe it is instructive to study the wind and wave data that we use to 
establish the respective distributions. A scatter diagram of the mean wind speed and signifi cant wave height 
data is shown in Figure 1(a). It is useful to study separately the data associated with ‘onshore’ and ‘offshore’ 
wind directions. Here, onshore winds will refer to winds that blow towards the shore from the sea, while 
offshore winds will refer to winds that blow towards the sea from the shore. Thus, all 10 min data for which 
the mean direction is between 0º and 140º are treated as onshore winds, while data for which the mean wind 
direction is between 180º and 325º are treated as offshore winds2. A third control set, consisting of all of the 
available data, regardless of associated wind direction, is treated as the ‘all-direction’ winds in this study. It 
may be seen from Figure 1a that there is signifi cant scatter in the data, with onshore and offshore winds fol-
lowing markedly different trends. The onshore winds suggest greater correlation between wind speed and wave 
heights, which is possibly because of the longer fetch associated with onshore winds. Another feature of inter-
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est is the presence of some fairly high wave heights associated with relatively low wind speeds, a feature more 
prominent in the offshore wind data since this would not be expected in open seas where larger wave heights 
are generally associated with higher wind speeds. The distribution of wind speeds and directions, as presented 
in the wind rose in Figure 1b, suggests that onshore winds are associated with a greater relative frequency of 
higher wind speeds than lower wind speeds. This is in contrast with the offshore wind data where lower wind 
speeds are more common. This is refl ected in the respective mean wind speeds for each data set separately. 
The mean wind speeds are 9.57, 6.25 and 7.70 m s−1, respectively, for the onshore, offshore and all-direction 
winds.

We assume that the mean wind speed, V, follows a Rayleigh distribution, as is done, for example, in the 
International Electrotechnical Commission (IEC) design guidelines.3,4 We are interested here in studying loads 
that arise while the turbine is operating. Accordingly, the Rayleigh distribution is truncated both below a cut-
in wind speed, Vin, of 4 m s−1, and above a cut-out wind speed, Vout, of 25 m s−1. The expression for the truncated 
cumulative distribution function (CDF), FV(v), of V is thus:

(a)

(b)

Figure 1. (a) Wind–wave scatter diagram and (b) wind rose2
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where a is a single parameter of the Rayleigh distribution that can be estimated from the average value 
of V.

To represent the variability in the wave climate and account for the dependence of wave heights on 
wind speed, we assume that the random variable, Hs, the signifi cant wave height, conditional on the mean 
wind speed, V, follows a Weibull distribution (as is done, for example, in the offshore standard, Det 
Norske Veritas (DNV)-OS-J101.5 The expression for the CDF of Hs conditional on V, namely FHsV(h), is 
given by:
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Both the shape parameter, k, and the scale parameter, h, of the Weibull distribution depend on the mean wind 
speed. They are estimated on the basis of the available summary data, and quadratic polynomials in mean wind 
speed were found to yield good estimates for k and h as functions of the mean wind speed.

Turbine Load
For the turbine load (or response) random variable, we focus our attention on the absolute 10 min maximum 
(larger of the maximum positive and negative values) of the mudline bending moment in one of two available 
orthogonal components, fi xed in space. Hereinafter, we refer to this load variable simply as the mudline bending 
moment and denote it by M. We choose to represent the random variable, M, by a two-parameter Gumbel 
distribution, conditional on the environmental variables, V and Hs. The cumulative distribution function for M 
is given by:
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The Gumbel parameters, u (modal value) and b (measure of dispersion), are dependent on V and Hs, and are 
evaluated from the available (V, Hs, M) data. To this end, the data are binned into (V, Hs) cells and the param-
eters, u and b, are estimated for each cell. A cell size of 2 m s−1 in the V direction and 0.5 m in the Hs direction 
is used. The parameters u and b are estimated using the method of moments, with distribution fi ts adjusted 
sometimes in order to obtain a better representation of tail fi ts because of our interest in extreme loads that 
require extrapolation to higher load levels than were recorded.

The parameters, u and b, thus obtained, are presented in Figure 2, for the all-direction winds only. It is 
observed from Figure 2 that both parameters exhibit very high variability with respect to the environmental 
variables. This precludes development of a smooth surface fi t over all the values of V and Hs of interest, which 
would have yielded a simple closed-form conditional distribution of the random variable M (given V and Hs). 
Figure 2 also highlights the limitations of using recorded data, which was alluded to earlier. It is observed that 
data are not available for many cells (shown by zero values of the parameters)—most notably at large (V, Hs) 
values. We estimate Gumbel parameters for these ‘empty’ cells by using a weighted average of all non-empty 
cells based on inverse-squared distance (in V-Hs space). The Gumbel parameters for the offshore and onshore 
wind cases not shown in Figure 2 are based on data that are subsets of the all-direction wind data, and they 
follow similar non-smooth trends with V and Hs.

The highly variable behaviour of the load distribution parameters with respect to the environmental variables, 
as discussed, is mainly due to the scarcity of data in most bins. For example, out of the 50 (V, Hs) bins that 
have any data at all for the all-direction winds, 30 bins have fewer than 40 data, and 21 bins have fewer than 
20 bins. The available data are even scarcer when divided into onshore and offshore winds. Such scarcity 
of data precludes binning using more than two environmental variables. If additional data were available, 
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turbulence intensity (or turbulence standard deviation, sV), which might be expected to infl uence turbine loads 
to some degree, might have been considered as a third environmental random variable, in addition to V and 
Hs. On this latter point, in a related article,6 the authors considered the use of two alternative random variables, 
(V, sV), instead of (V, Hs) considered here [while the use of three environmental random variables makes it 
diffi cult to obtain a suffi cient number of data in each 3-D bin, the 2-D (V, sV) binning is more reasonable to 
apply]. For the same data sets used here, it was found that even though there is some infl uence on long-term 
loads by including sV as a random variable, this effect is only of secondary importance to V and is comparable 
with the importance of Hs.

(a)

(b)

Figure 2. Variation of Gumbel parameters, (a) u and (b) b, with mean wind speed V, and signifi cant wave height Hs, 
for all-direction winds. Estimates at the centres of the (V, Hs) cells are shown
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Application and Results
Once the distributions for the environmental and load random variables are obtained, we can establish the 
probabilistic distribution of long-term loads, and thus estimate long-term loads using equation (1). The 
integrand in equation (1) cannot be evaluated analytically; however, since not all the involved distribution 
functions there are available in closed form. Accordingly, we evaluate the integral using a fi nite summation 
that again involves dividing the V-Hs plane into cells of equal size. The contribution to the probability 
of exceedance of a given load level from each cell is computed by evaluating the load distribution at the 
centre of the cell, under the assumption that the distribution remains fairly constant over each cell. The total 
probability is fi nally obtained by summing contributions from all the cells, as expressed by the following 
double summation:

 P F l v h f v h V HT L V H T i j V H i j s
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where NV and NH denote the number of cells along the V and Hs directions, respectively. The width of the cells 
is denoted by ∆V and ∆Hs in each of the directions. Each cell (i, j) has central value (vi, hj). We use the same 
cell widths as were used to estimate the turbine load distribution parameters—namely, 2 m s−1 in the V direc-
tion and 0.5 m in the Hs direction. This leads to a total of 96 cells when we evaluate the summation for wind 
speeds between 4 and 20 m s−1, and for signifi cant wave heights up to 6 m. The upper bounds for V and Hs 
were verifi ed to be satisfactory for the purposes of these computations, primarily due to the low probability 
associated with higher wind speed and signifi cant wave height levels.

The long-term load exceedance probability (i.e. the probability of exceeding specifi ed levels of M in 10 min), 
computed using equation (5), is shown in Figure 3 with the thicker lines, for all three wind direction cases—
namely, the all-direction, onshore and offshore winds. It is observed that at higher load levels associated with 
longer return periods, the exceedance probability in offshore winds is generally higher than for all-direction 
winds, while this probability for onshore winds is signifi cantly lower (by two to three orders of magnitude). 
The exceedance probability curve for the all-direction winds lies between the probability curves for the onshore 
and offshore winds as might be expected, since the all-direction winds include the onshore and offshore winds 
as subsets. The long-term load for a specifi ed target probability (or return period) may be estimated from the 

Figure 3. Probability of load exceedance curves for the three wind direction cases. The thick lines represent the total 
probability, while the thin lines represent contributions only from signifi cant cells identifi ed in Figure 4
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exceedance probability curves in Figure 3. Results for 20 and 50 year return periods are summarized in Table 
1—for example, the long-term load for a 20 year return period is found to be 28.3, 32.9 and 19.7 MN-m, 
respectively, for the all-direction, offshore and onshore winds. Small increases in these loads are seen at the 
higher 50 year return period level.

We now study the relative contribution of different (V, Hs) cells to the total probability of exceedance of a 
given load level. This enables one to determine the most signifi cant environmental conditions that govern the 
overall risk. Figure 4 shows the fractional contribution of each cell to the exceedance probability associated 
with a 20 year return period load. It is observed that, for all three wind direction cases, a single cell alone 
makes almost the entire contribution to the overall exceedance probability; we refer to these cells as signifi cant 
cells in the following. The exceedance probability curves for these signifi cant cells are plotted in Fig 3 using 
thin lines. It may be seen that these cells contribute almost all of the probability at high loads, which include 
the long-term loads presented earlier for the 20 and 50 year return periods. To understand why only a few 
individual cells identifi ed in Figure 4 contribute signifi cantly to the total exceedance probability, we note that 
the long-term load exceedance probability is obtained by summing, from each cell, the product of the short-
term distribution of loads (given the environment) and the environment distribution itself, as described by 
equation (5). In this study, it is found that for all three cases, contributions from the signifi cant cells are large 
due mainly to the large short-term load exceedance conditional probability. This, in turn, is because of large 
estimates of Gumbel parameters, u and b, for the signifi cant cells compared with those for other cells in the 
three wind direction cases. It should be pointed out that the results presented and the conclusions regarding 
signifi cant cells are directly dependent on the available data, which are extremely limited in some cells.

Because estimates of the parameters for the distributions of the load variable, M, greatly infl uence the results, 
it is important to investigate the effect of variability or uncertainty in these parameters on predicted long-term 
loads. This variability stems from the relative scarcity of data in some cells as well as from the uncertainty 
associated with statistical estimation of the parameters using the data that are available. We discuss the effect 
of variability in parameters in the following.

Variability in Parameters for Load Distribution
We study the effect of uncertainty in the parameters, u and b, for the short-term load distribution, M, condi-
tional on environmental variables, V and Hs, and the resulting variability in the predicted long-term loads. In 
order to quantify this variability, we use non-parametric bootstrap techniques1 that rely on randomly resampling 
data, say Nr times, and then estimating parameters, u and b, for each resampling, using the same approach 
followed for the mean (no-variability) parameter predictions that were presented before (in Figure 2). Using 
the set of Nr estimates for the two parameters, it is possible to obtain appropriate statistics such as the mean 
value and standard deviation of each parameter, which helps to quantify the variability in that parameter. We 
study the effect of variability in these parameters on the long-term load exceedance distribution by computing 
exceedance probability curves for each of the resamplings, and then computing 5- and 95-percentile levels of 
probability for a specifi ed load level. These can then be used to provide confi dence bounds on our mean value 
(no variability) estimates of long-term loads for specifi ed return periods.

The effect of the variability in parameters of the short-term load distribution is presented in Figure 5, which 
shows the 5- and 95-percentile values of the exceedance probability, for a given load level. The curves shown 

Table I. Long-term loads for different wind directions

Return period 
(years)

Long-term load (MN-m)

All-direction Offshore Onshore

20 28.3 32.9 19.7
50 29.4 34.4 20.7
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(a)

(b)

(c)

Figure 4. Fractional contributions of individual (V, Hs) cells to the normalized probability, Pnorm, representing the cell 
probability divided by the total probability of exceeding the 20 year design load for (a) offshore winds, (b) onshore 

winds and (c) all-direction winds. Signifi cant cells are the cells with the largest contributions
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are only for the signifi cant cells (i.e. the cells contributing most to total probability, as indicated in Figure 4). 
It is evident from these curves that, for any given planned service life or return period, the range of predicted 
long-term loads can be very large, which is a direct result of the limited data available. For example, for the 
all-direction winds, the 5- and 95-percentile long-term loads for a 20 year service life are about 23 and 33 MN-
m, respectively. This range represents greater than 30% of the mean load prediction (see Table 1). The effect 
of variability is most prominent for offshore winds and least so for onshore winds. Onshore wind loads exhibit 
the lowest uncertainty because the signifi cant cell for this case had a larger amount of data (58 records) than 
was the case for the offshore and all-direction winds. Moreover, the Gumbel parameters estimated in this case 
led to a very good distribution fi t to the data; hence, bootstrap resamplings did not introduce large variability 
in the parameter values and thus in the long-term loads. The signifi cant cell in the offshore winds, on the other 
hand, had much less data (only 32 records) and these data exhibited relatively large scatter, leading to worse 
fi ts from parameter uncertainty out of the bootstrap resamplings. This, in turn, led to signifi cant uncertainty in 
long-term load predictions for the offshore case. The variability in long-term loads for the all-direction case 
was not as large as in the onshore case but not as small as in the offshore case.

Discussion
In order to interpret the various results presented from a physical point of view, a question of particular inter-
est relates to why the long-term loads are governed by offshore winds, even though the mean wind speed for 
the offshore winds case is smaller (6.25 m s−1) than that for the onshore winds (9.57 m s−1), and the water depth 
is fairly small, which might suggest relatively low importance of hydrodynamic loads. Possible reasons include 
(i) the complex wave kinematics at the site because of the shallow water and the steeply sloping sea bed and 
(ii) wind–wave misalignment. Camp et al.2 showed that the wind and wave directions for the offshore winds 
at the Blyth site are generally misaligned, in contrast to onshore wind conditions where wind and wave direc-
tions are generally aligned, because of the larger fetch associated with onshore winds. Because the wind turbine 
response variable (a component of the mudline moment) studied here has a fi xed orientation in space, the 
misalignment of the wave load relative to the wind load can act to reduce the net bending moment at the point 
under consideration. If this occurs, it is then possible that higher waves might lead to lower bending moments, 

Figure 5. Probability of load exceedance curves at the 5- and 95%-confi dence levels based on bootstrapping of 
recorded loads data. Results shown are for signifi cant cells only
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and vice versa, for offshore wind conditions. This might, in part, also explain why the signifi cant cells (see 
Figure 4) for offshore winds are associated with low values of signifi cant wave height. In addition to wind–
wave misalignment, several other factors specifi c to the Blyth site might infl uence turbine loads. One such 
factor is that the turbine is located in shallow water (about 9 m), on a very sharply sloping sea bed, where 
changes in the mean water level can lead to signifi cant changes in the wave kinematics and in hydrodynamic 
loads. It was, in fact, found from the data that the low wave heights causing the larger loads are generally 
associated with relatively higher mean water levels. Furthermore, this turbine location experiences breaking 
waves that cause impact loads on the tower. Because of all of these factors, the resulting lateral hydrodynamic 
loads on the tower are rather complex in nature.7 If one were to model these various effects, additional random 
variables (such as the inclusion of wave period, wave spreading/directionality parameters, etc.) that defi ne such 
more complex environmental conditions would need to be considered. However, data required for these vari-
ables, as well as for characteristics such as wind–wave misalignment discussed above, were not available in 
the summary data from the Blyth site—as such, the effect of these variables on turbine loads could not be 
systematically studied here.

Finally, the nature and quantity of the recorded data place severe limitations on the analysis based on such 
data. While the 10 min environmental and turbine load statistics were recorded at the Blyth site for a period 
of 16 months, the amount of good usable data (for which meaningful measurements for all the relevant chan-
nels are available) makes up only about 10% of the overall data. These data are thus limited in the sense that 
they may not represent all the likely environmental conditions at this site. If more data were available, confi -
dence bounds on estimates of the parameters used for distributions, and on subsequent quantitative results such 
as on predicted long-term loads, would be improved. Recognizing that there are limitations in making defi ni-
tive inferences, the presented analyses here suggest that long-term loads for mudline bending moment, obtained 
using the statistical load extrapolation procedure, are governed by offshore winds.

Conclusions
We have used a statistical load extrapolation procedure to estimate long-term extreme loads for an offshore 
wind turbine using limited fi eld data. The mean wind speed at the nacelle and the signifi cant wave height were 
used to describe the environment, while the mudline bending moment was used to describe the turbine load 
of interest. Short-term distributions for the turbine load conditional on the environmental variables were mod-
elled using parametric distributions. Parameters for these distributions, as well as for the environmental random 
variables, were estimated from the available data, which were extremely limited. Long-term loads, associated 
with return periods of 20 and 50 years, were obtained.

It was observed that the environmental and response characteristics associated with onshore winds (winds 
blowing from the sea to the shore) and offshore winds (winds blowing from the shore to the sea) are signifi -
cantly different. The long-term loads were thus calculated separately for these different wind regimes, and it 
was found that the offshore winds governed the long-term loads even though the average wind speeds are 
lower for these wind conditions, compared with those for onshore winds. ‘All-direction’ winds were also 
studied for the sake of comparison. It was found that, for each wind regime, only a small subset of mean wind 
speed and signifi cant wave height combinations made dominant contributions to the exceedance probability 
of a given load level. This was mainly because of the relatively large values of the distribution parameters 
(modal value and measure of dispersion for the Gumbel model used) for the short-term load conditional on 
the environmental random variables that were found over a small range of wind speeds and wave heights. It 
was noted that the estimation of these parameters has limitations as the fi eld data available for such estimation 
are very limited. The variability in the estimation of the parameters for the short-term load distributions was 
studied using bootstrap techniques, and it was found that the range of predicted long-term loads for a given 
return period was very large—a clear manifestation of the lack of suffi cient data.

In summary, it was concluded that, within the limitations related to the quantity of fi eld data, offshore winds 
govern the long-term loads for mudline bending moment for the turbine at the Blyth site. It is worth noting 
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that certain features specifi c to the study site, such as the complex wave kinematics and hydrodynamics, as 
well as possible wind–wave misalignment, might help to explain why offshore winds control long-term turbine 
loads; however, further studies may be needed to quantify some of these effects.
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