Exercise 3: Spatial Analysis GIS in Water Resources

Prepared by David G. Tarboton and David R. Maidment Updated to ArcGIS Pro by Paul Ruess, August 2016 Updated David Tarboton, September 2017, 2018

Goal

The goal of this exercise is to serve as an introduction to Spatial Analysis with ArcGIS.

Objectives

- Calculate slope from a grid digital elevation model
- Apply model builder geoprocessing capability to program a sequence of ArcGIS functions
- Use ArcGIS.com services to access and extract elevation data
- Interpolate data values at points to create a spatial field to use in hydrologic calculations. Use this to calculate watershed area average precipitation
- Use raster data and raster calculator functionality to calculate watershed attributes such as mean elevation, mean annual precipitation and runoff ratio.

Computer and Data Requirements

To carry out this exercise, you need to have a computer, which runs ArcGIS Pro 2.2 or higher. The necessary data are provided in the accompanying zip file, http://hydrology.usu.edu/dtarb/giswr/2018/Ex3Data.zip

Part 1. Slope calculations

1.1 Hand Calculations

Given the following grid of elevations, refer to the slides <u>http://hydrology.usu.edu/dtarb/giswr/2018/SpatialAnalysis.pptx</u> from lecture 7 and calculate by hand the slope and aspect (slope direction) at the grid cell labeled **A** using

- (i) The standard ESRI surface slope function (slides 41-44)
- (ii) The 8 direction pour point model (slides 45-46)
- (iii) The Dinfinity algorithm (slides 49-50).

Grid cell size 10m

25.4	26.1	27	28.6	27.7
25	26.0	26.4 A	27.9	27.4
25.1	25.8	26.8 B	28.6	27.6
27.5	28	27.7	30.6	28.3

Hint: For Dinfinity you only need to consider the single triangle bounded by values 26.0, 26.4 and 25.8 in the calculation

$$\begin{array}{c} & 10 \\ &$$

Comment on the differences and indicate which you think is a better approximation of the direction of water flow over the surface.

To turn in: Hand calculations of slope at point A using each of the three methods and comments on the differences.

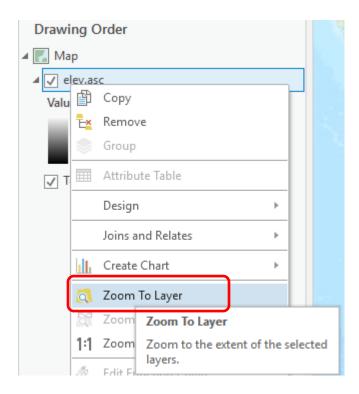
1.2 Verifying calculations using ArcGIS

Verify the calculations in (1.1) using ArcGIS Hydrology and Surface Toolbox functions.

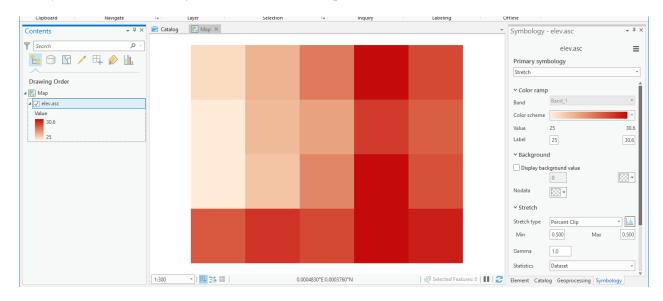
Save the following to a text file 'elev.asc' (This file is also included in http://hydrology.usu.edu/dtarb/giswr/2018/Ex3Data.zip) ncols 5 nrows 4 xllcorner 0 0 yllcorner cellsize 10 NODATA_value -9999 25.4 26.1 27 28.6 27.7 25 26.0 26.4 27.9 27.4 25.1 25.8 26.8 28.6 27.6 27.7 30.6 27.5 28 28.3

This shows how raw grid data can be represented in an ASCII text format that ArcGIS can import. Knowing how to get raw information into a form where it can be imported and analyzed using GIS is a useful skill.

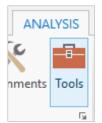
Open ArcGIS Pro, establish a new project called Ex3Slope

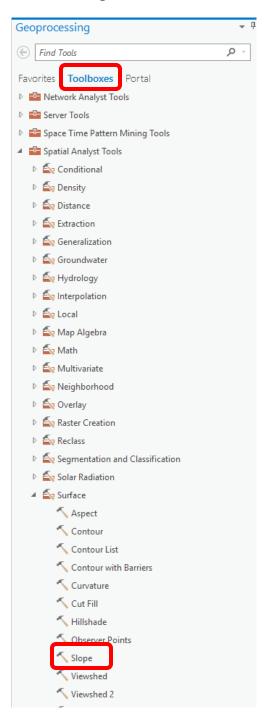

	Create a New Project
Create a new project	Name Ex3Slope
Select a project template	Location C:\Users\dt\Desktop\Ex3
Blank	Create a new folder for this project

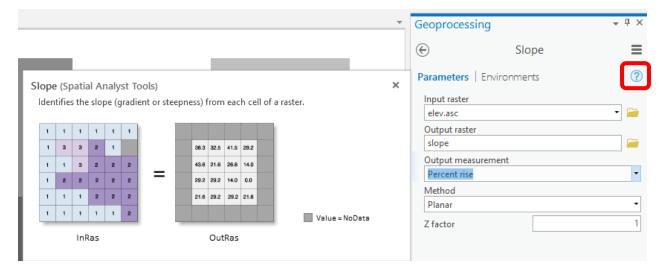
Add a New Map to the Project



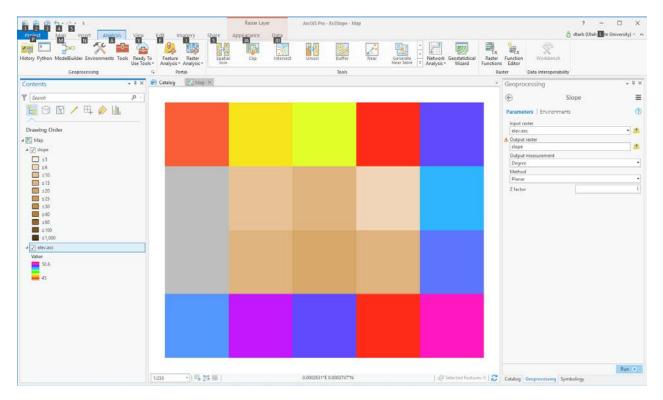
and use Add Data th to add this file to the map. Note that ArcGIS interprets files with the .asc type extension as raster files in this ASCII format and can work with them directly.


Zoom to the raster layer that was added.

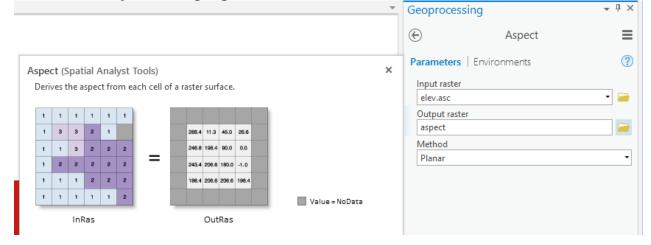

The first thing you'll notice is that this grid is in the middle of the ocean. This is because its corner coordinates (0, 0) are not linked to a specific coordinate system and position on the Earth. This is fine in this example and illustrates ArcGIS ability to perform generic raster calculations. Turn off (or Remove) the Topography layer because the background map is not needed. Right click on the elev.asc layer and using Symbology, color the layer so that the range in elevation values is more readily visualized. You can click on any of these cells to verify that the numbers correspond to the values in the table above.


Select Analysis/Tools to add Geoprocessing to the right panel

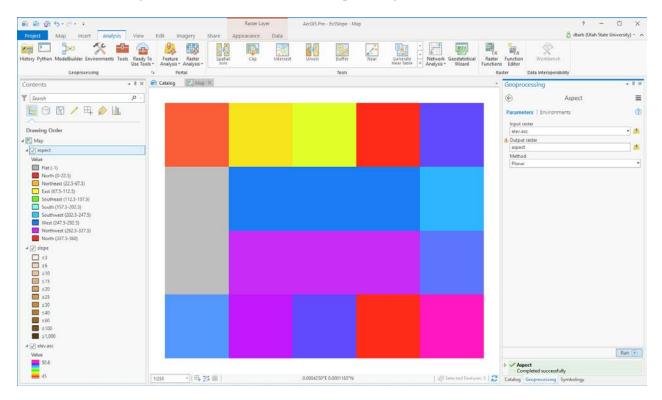
In the Geoprocessing panel, select the Toolboxes header and open the tool Spatial Analyst Tools \rightarrow Surface \rightarrow Slope.



Hover over the ?? to see help information, and click on the ?? to open up a webpage with more details.


Select **elev.asc** as the input raster and specify names for the output raster (e.g. **slope**). Note that the extension you put on an output raster name designates its type. (e.g. no extension for an ESRI grid, .tif for a geotiff file, .img for an Image file). Note that ESRI GRID file names outside of Geodatabases cannot exceed 13 characters. Set the Output measurement to **PERCENT_RISE** and leave the Z factor at **1** and method as Planar. Click **Run**.

The resulting Slope grid should be added to the display. Click on the raster to verify your hand calculation for grid cell A and note the value of slope for grid cell B.



Note also that slope was not computed for the edge cells due to insufficient information.

Open the tool **Spatial Analyst Tools** \rightarrow **Surface** \rightarrow **Aspect**. Select **elev.asc** as the Input raster and specify a name for the output raster (e.g. **aspect**). Click **Run**.

The resulting Aspect grid should be computed and added to the display. Click on the raster to verify your hand calculation for grid cell A and note the value of aspect for grid cell B.

Open the tool Spatial Analyst Tools → Hydrology → Flow Direction

Geoprocessing 🝷 🖣	×
E Find Tools	=
Favorites Toolboxes Portal	
Server Tools	
Space Time Pattern Mining Tools	
 Spatial Analyst Tools 	
Conditional	
Density	
Distance	
Extraction	-
Generalization	
Groundwater	
🔺 🚉 Hydrology	
🔨 Basin	
ill 🔨 Fill	
Flow Accumulation	
Flow Direction	
Flow Direction (Spatial Analyst Tools) Creates a raster of flow direction from each cell to neighbor.	o its steepest downslope
🔨 Stream Link	

Select **elev.asc** as the input raster and specify names for output rasters (e.g. **FlowDir** and **PercDrop**). Leave the Flow direction type as D8. Note that the help explanation that appears when click on the output drop raster field in the dialog box explains that the Output drop raster is really the slope expressed as a percentage. Click **Run**.

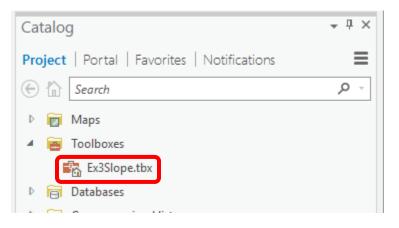
	*	Geoprocessing	₩ ₽ ×
		E Flow Direction	≡
Flow Direction (Spatial Analyst Tools) Creates a raster of flow direction from eau using D8, Multiple Flow Direction (MFD) of 78 72 68 71 58 49 74 67 56 49 46 50 69 53 44 37 38 49 64 58 55 22 31 24 65 61 47 21 15 19	ch cell to its downslope neighbor, or neighbors,	Parameters Environments Input surface raster elev.asc Output flow direction raster FlowDir FlowDir Force all edge cells to flow outward Output drop raster PercDrop Flow direction type Flow direction type	?
74 53 34 12 11 12 Elev_Ras	1 1 1 1 4 16 Flow_Dir	D8	•
each cell along the direction of cells, expressed in percentages.	o of the maximum change in elevation f flow to the path length between center		
This output is of floating-point	type.		

Click on the FlowDir and PercDrop grids that are created to verify that the numbers correspond to the values you calculated by hand; resolve or reconcile any differences. Note that the PercDrop value that the Flow Direction tool reports is different from hand calculations. This is a discrepancy that I have pointed out to ESRI and they acknowledged it is a problem, but have not yet corrected.

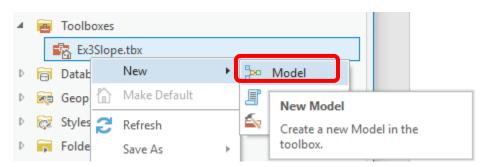
Record in a table the ArcGIS calculated flow direction and hydrologic slope (Output drop) at grid cells A and B.

Now set the Flow direction type to DINF in the Flow direction tool, and set different names for Output flow direction raster and Output drop raster, and Run.

Geoproce	essing	≁ Å ×
\odot	Flow Direction	≡
Paramete	rs Environments	?
Input sur	face raster	
elev.asc		• 🧰
Output fl	ow direction raster	
flowdirD	inf	
Force	all edge cells to flow outward	
Output d	rop raster	
percdrop	Dinf	
Flow dire	ction type	
DINF		•

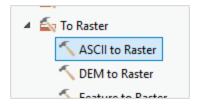

Click on the FlowDirDinf and PercDropDinf grids that are created and record the values at grid cells A and B.

To turn in: Table giving slope, aspect, hydrologic slope and flow direction at grid cells A and B. For hydrologic slope report results from both D8 and DINF methods. Include in your solution diagrams or sketches that define or indicate what each of these numbers means for the specific values obtained for cells A and B.


1.3 Automating procedures using ModelBuilder

ModelBuilder provides a convenient way to automate and combine together geoprocessing tools in ArcToolbox. Here we will develop a ModelBuilder tool to automate the importing of the ASCII grid and calculation of Slope, Aspect, Hydrologic Slope and Flow direction.

ArcGIS Pro projects come with toolboxes already created, where you can create new models, scripts, and toolsets. In the **Catalog** panel **Project** tab expand Toolboxes and find the **Ex3Slope** toolbox.



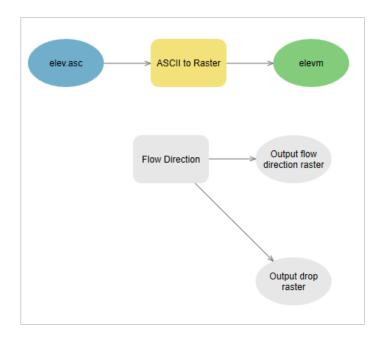
Right-click on **Ex3Slope.tbx** and select **New → Model**.

The model window should open in the main part of the display. This is a window where you can drag, drop and link tools in a visual way much like constructing a flow chart.

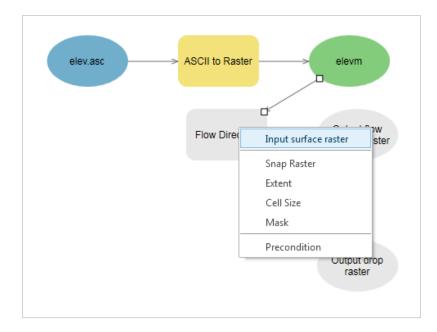
In the **Geoprocessing** panel, browse to **Conversion Tools** \rightarrow **To Raster** \rightarrow **ASCII to Raster**.

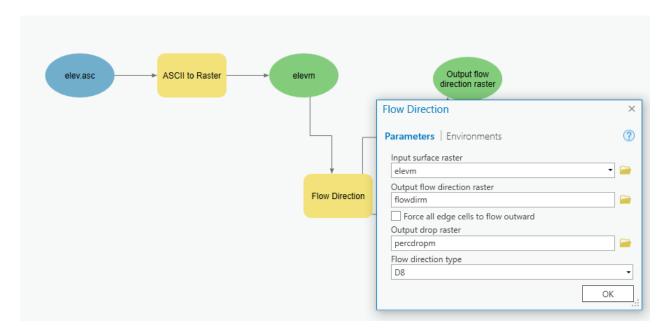
Drag this tool onto the model window (middle of screen). Note that in this model I am choosing to first import the ASCII text file to an ESRI GRID format, rather than work with it in text format. It is faster to work with binary formats like .tif or ESRI GRID.

🛃 Map	P• Mo	odel 🗙		
ASC	II to Ra	ster 🗆	 Output raster	


Double click on the **ASCII to Raster rectangle** to set this tool's inputs and outputs.

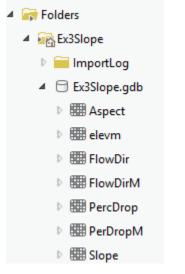
ASCII to Raster	Х
Parameters Environments	?
Input ASCII raster file	
C:\Users\dt\Desktop\Ex3\elev.asc	
Output raster	
ASCIITo_asc1	
Output data type	
Float	-
ОК	


Set the Input ASCII raster file to **elev.asc** and Output raster to **elevm** (I used eleven to indicate this is a result from the model). Set the output data type to be **Float**. Click OK to dismiss this dialog. Note that the model elements on the ModelBuilder palette are now colored indicating that their inputs are complete.


Locate the tool **Spatial Analyst Tools** \rightarrow **Hydrology** \rightarrow **Flow Direction** and drag it on to your window. Your window should appear as follows.

The output from the ASCII to raster function needs to be taken as input to the Flow Direction function. To do this click-and-drag a line from **elevm**, the Output raster of ASCII to Raster, to the **Flow Direction** tool rectangle. At the dialog that pops up select **Input surface raster** to indicate that elevm is to be used as the input Surface raster for the Flow Direction tool. The "m" in these names is to signify that the results are being created from a model rather than by using the tools one by one.

Notice that the "output drop" oval is gray. This is because this is an optional output that has not been specified. Double click on the Flow Direction tool and specify names for both the Output flow direction raster and optional Output drop raster.

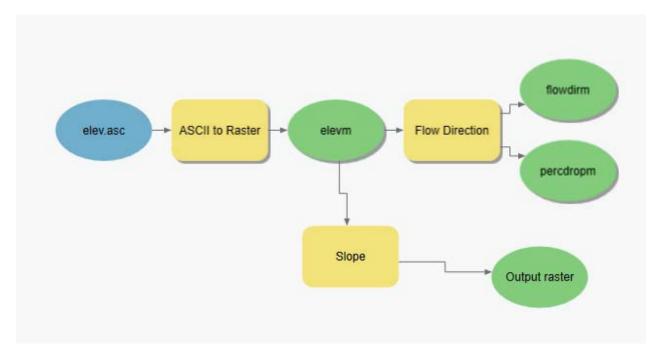

Click OK. Alternatively you could double click on output ovals individually to specify the output rasters. The model is now ready to run. Run the model by clicking the **Run** button in the ModelBuilder tab.

	HARE		
New Save Save Properties Environments As	To Validate R	un Tools Variable Iterators Utilities Logical	
Model View		Insert	Group
	– Д 🗙 🔣 Мар 🔛	Model ×	
🖸 🖊 🛱 🤌 🛄	elev.asc	ASCII to Raster	elevm
rder			
		Flow Direction>	flowdirm
graphic			
		\sim	
			percdropm

The yellow boxes will briefly flash red as each step is executed. The Model progress box opens and the progress bar indicates when the model completes. Note that ModelBuilder can be a bit finicky, and may take a few runs to work correctly! Also note that, if the ModelBuilder fails midway through (e.g. if the model fails after creating the elevm file), you will either need to re-name any previously computer outputs, or delete them using the Catalog panel.

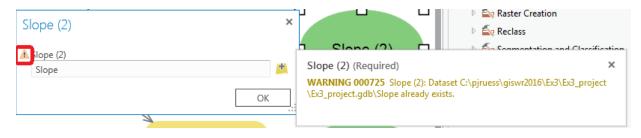
Model	×
Processing 2 of 2	
Done	
Executing (ASCII to Raster): ASCIIToRaster C:\pjruess\ \elev.asc C:\pjruess\giswr2016\Ex3\Ex3_project\Ex3_pr Start Time: Wed Sep 14 10:42:47 2016	-
Succeeded at Wed Sep 14 10:42:48 2016 (Elapsed Time Executing (Flow Direction): FlowDirection C:\pjruess\g \Ex3_project.gdb\elevm C:\pjruess\giswr2016\Ex3\Ex3 \flowdirm NORMAL C:\pjruess\giswr2016\Ex3\Ex3_pro	jiswr2016\Ex3\Ex3_project _project\Ex3_project.gdb
\percdropm Start Time: Wed Sep 14 10:42:49 2016	
Succeeded at Wed Sep 14 10:42:51 2016 (Elapsed Time	: 1.89 seconds)

Verify that your files were created successfully in the **Catalog** pane. You may need to right click and Refresh the Ex3Slope.gdb.

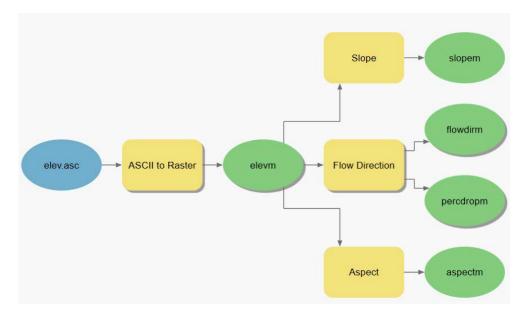


You can now add the outputs to the map and examine the results.

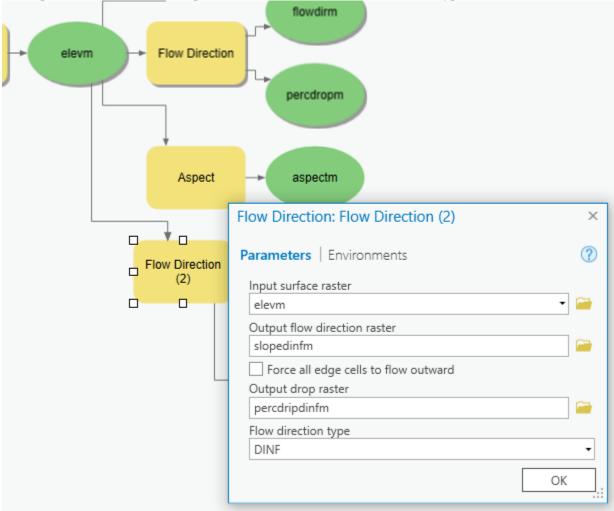
Save your Project to make sure you don't lose what you've done.


In the model, use the **Auto Layout** tool in the **ModelBuilder** pane to organize the layout.

Add the **Spatial Analyst** \rightarrow **Surface** \rightarrow **Slope** tool to your model by dragging it onto the model window. Connect the eleven output to this tool, specifying that it is the Input Raster for the Slope Tool.

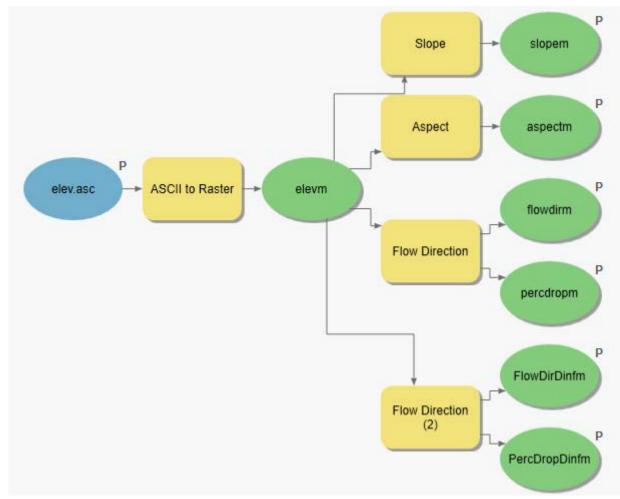


Add the **Spatial Analyst** \rightarrow **Surface** \rightarrow **Aspect** tool to your model connecting it to eleven as an input in a similar way. Double click on the Slope and aspect tool outputs and specify file names for the outputs.


When setting names you need to be careful that you do not use a name of a grid that already exists, or else you will get a yellow warning sign in the display as shown below and the model may not run.

Double click on the Slope tool and set the Output measurement to **Percent_Rise**. Your model should appear as follows. If you have trouble adding the Slope or Aspect tools, it sometimes helps to save your Project, close ArcGIS Pro, then open it again.

Finally add another copy of the Flow Direction tool to the model connected to take input from elevm and set output flow direction and drop raster filenames. Set the flow direction type as DINF.


You can now click run and do all the processing required to import the data, compute Slope, Aspect, Flow Direction and Hydrologic Slope at the click of a single button. Pretty slick!

But wait, there is more. You can set the model to take other inputs.

Right click on elev.asc and select Parameter.

Right click on each of the outputs **flowDirm**, **percdropm**, **slopem**, **aspectm**, **slopedinfm**, and **percdropdinfm**, in turn and select **Parameter** and **Add to Display**.

A P now appears next to these elements in the diagram indicating that they are 'parameters' of the model that may be adjusted at run time. Also note that by selecting "Add to Display", the parameters that you previously computed are now on the Map. Close your model clicking on Yes to Save.

🛃 Map 🛛 📴 Mod I 🗙		
		Slope
ſ		
	Model	×
	Save model?	
Р		
asc ASCII to F	Yes No	Cancel

Click on the model in the **Catalog** Project window and select **Properties** to rename it something you like (e.g. **FlowDirection**).

 Ex3Slope.tbx 	Tool Properties: Mod	اما
Do Model	ioor roperties. moe	
Databases	General	Name
Edit	Parameters	FlowDirection
Add To Analysis Gallery		Label
Add To Favorites		FlowDirection
Add To Model		Options
▷		Set password
⊳ 💼 _{Ех3} : 🛱 Сору		Store tool with relative p
Delete		
elev View Metadata		
Flov Edit Metadata		
▷ 📰 flov		
Properties		
Properties		
percdropdinf Show properties for the tool.		

If you go back to your model and now **double click** on it or right-click and **Open** it, you'll see that the input files are shown as parameters of the model just like when you execute a tool in Geoprocessing.

Catalog	Parameters Environments	
Project Portal Favorites H	elev.asc C:\pjruess\qiswr2016\Ex3\Ex3_data\elev.asc	
🕞 🏠 Search	1 flowdirm	
Maps	flowdirm A percdropm	
🔺 🗃 Toolboxes	percdropm	
🔺 💼 Ex3Slope.tbx	slopem slopem	
Po FlowDirection	aspectm	
~	aspectm	

Where you see warnings near one of your files, it usually either means that there is already a file of that name in the place where you propose to put the output, or there is no input file. These can be resolved by setting the inputs and outputs correctly.

If at some point you want to go back and modify your model you should open it to **Edit** and make the changes you want.

🔺 🗃 Toolboxes		
🔺 💼 Ex3Slope		
Prov Flow Direction		
✓ ☐ Databa Open		
► ि Ex3		

You are done creating this model. Save your Project.

ModelBuilder is a very powerful way of creating complex analyses, and documenting your "workflow" in a form that is visual and can readily be described. In this way, analyses that you've done can be passed on to other analysts, and you can also use the visual palette display in your term project report or thesis to document how you've done your analysis, so the visual aspect of the display helps with documenting your work, as well as in organizing it.

To turn in: A screen capture of your final model builder model.

Close ArcGIS Pro.

We will now use this model for different data. Reopen ArcGIS Pro. Close the Map tab and add a new map. Double click on your **FlowDirection** model in the Ex3 toolbox to run it. Locate the file **demo.asc** extracted from the zip file of data provided at the beginning of this exercise to use as input. Set alternative names for the parameter outputs.

Geoprocessing	тţх
E FlowDirection	≡
Parameters Environments	?
elev.asc	
C:\Users\dt\Desktop\Ex3\demo.asc	
slopem	
demoslope	
aspectm	
demoaspect	
flowdirm	
demoflowdir	
percdropm	
demopercdrop	
slopedinfm	
demoslopedinf	
percdropdinfm	
demopercdripdinf	

Click Run and the model should generate results for each of the outputs and add these to the map. Turn off the topographic basemap because the spatial reference information for this data is not consistent with the web Mercator projection of the basemap. Examine the **Raster Layer Properties > Source > Statistics** and record the minimum and maximum values associated with each of the outputs. If you don't see anything in your screen once this function is complete, right click on one of the new layers produced and select "**Zoom to Layer**" and you'll see the new information show up.

To turn in: A table giving the minimum and maximum values of each of the six outputs Slope, Aspect, Flow Direction and Hydrologic Slope (Percentage drop) by D8 and Flow Direction and Hydrologic Slope (Percentage drop) by DINF for the digital elevation model in demo.asc. Also turn in a screen shot of the FlowDirDinf raster calculated using this model

Congratulations, you have just built a Model Builder geoprocessing program and used it to repeat your work for a different (and larger) dataset. If you would like to save this tool to take to another computer or share with someone else you can copy the file Ex3Slope.tbx from its location to a removable media to take with you. If you are going to be sharing this tool more widely there are additional steps to take to clean up the interface, label the input fields and write help documentation for it. Close ArcGIS Pro.

Part 2. San Marcos Elevation and Precipitation

The purpose of this part of the exercise is to calculate average watershed elevation for subwatersheds of the San Marcos basin, and to calculate average precipitation over each of these subwatersheds using different interpolation methods. Average precipitation is then converted to a volume of precipitation and compared to runoff volumes using a runoff ratio. This provides an insight into the annual water balance of these watersheds, namely what fraction of precipitation is streamflow and what fraction is lost to evapotranspiration and other losses such as infiltration and groundwater recharge.

The following data is provided in the Ex3Data.zip file:

SanMarcos.gdb file Geodatabase.

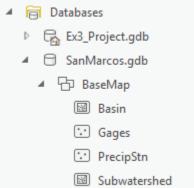
□ □ SanMarcos.gdb

- 🗆 🖶 BaseMap
 - 🖾 Basin
 - 😳 Gages
 - ⊡ PrecipStn
 - Subwatershed

There are the following feature classes:

- **Basin.** The San Marcos Basin feature class similar to that from exercise 2.
- Gages. The San Marcos Gages similar to that from exercise 2 that includes Mean Annual Flow.
- **PrecipStn**. PrecipStn contains mean annual precipitation data from precipitation stations in and around the San Marcos basin downloaded from NCDC following the procedures given in http://www.ce.utexas.edu/prof/maidment/gradhydro2005/docs/ncdcdata.doc. (The NCDC website has changed so it is no longer possible to get this data this way. You can obtain NCDC data from http://gis.ncdc.noaa.gov/map/viewer, but the process is somewhat tedious and requires processing and waiting for email before delivery so we are providing data for you to use.) This data was prepared by downloading all years of available precipitation data for the counties in and around the San Marcos basin, then averaging over these years, retaining only those stations with 6 or more years of annual total data reported by NCDC.
- **Subwatershed**. Subwatersheds delineated to each of the stream gages used in exercise 2 following the procedures that will be learned in a future exercise.

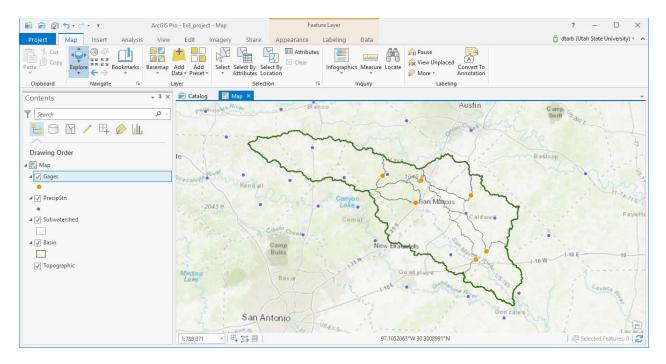
Note that in this geodatabase these feature classes have been projected to the


USA_Contiguous_Albers_Equal_Area_Conic coordinate system. It is generally better to do the sort of hydrologic analysis done here involving volumes and areas in an equal area projection and I chose this projection for this exercise.

1. Loading the Data

Open ArcGIS Pro and create a new blank project, **Ex3_project**. Click **Connections** in the **Insert** tab and select **Add Database**

PROJECT MAP INSERT AN	Select Existing Geodata	base
New Layout • E Toolbox •	€) ↑ 💽 « GISWR20	016 → Ex3 → Ex3Data → ▼
Map • Connections • 团 Task •	Folders	- Sammarcos.gub
Con ¹ New File <u>G</u> eodatabase <u>1</u> New Database <u>C</u> onnection		


to add the **SanMarcos.gdb** to the project. This is another way to associate a Geodatabase with a project. In the **Catalog** pane you should see

Right click on the BaseMap feature dataset and "Add To New Map".

🔺 🖯 SanMarcos.gd	b		
▲ 🗗 BaseMan			
🖾 Ba:	Add To New	•	🛃 Map
: Ga	New	÷	Мар
😳 Pre	Import	Þ	Add data to a new map.

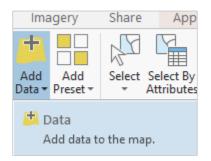
You should obtain a map with all these features added. Note I changed the symbology a bit.

If you right-click on one these feature classes in the map legend, select **Properties** and scroll down until you see **Spatial Reference** at the bottom of the layer properties, you'll see that they have the **NAD 1983 Albers** coordinate system with the North American Datum of 1983. You should also see that the Linear Unit is meters.

al	✓ Spatial Reference	
adata rce	Projected Coordinate System	NAD 1983 Albers
ation	Projection	Albers
ction	WKID	0
blay	Authority	
he	Linear Unit	Meter (1.0)
inition Query	False Easting	0.0
ne	False Northing	0.0
ige	Central Meridian	-96.0
exes	Standard Parallel 1	29.5
15	Standard Parallel 2	45.5
ates	Latitude Of Origin	37.5

If you move the cursor around on the map, you may see that the coordinates at the bottom are in degrees. If you want them in meters, consistent with the coordinate system, right-click on **Map** and under **Properties** \rightarrow **General** \rightarrow **Display Units**, select **Meters**.

Map Properties: Ma	ıp	
General		Mar
Extent	Name	Map
Metadata	Map Units	Meter
Elevation Surface	Display Units	Meters
Coordinate System	Display Offics	
	Reference scale	Meters


Zoom-to-Layer on the San Marcos **Basin**. Note that rather than displaying the negative coordinates because the San Marcos Basin is West of the Central Meridian of this projection (96°W) and below the Latitude of Origin (37.5°N) (and both the False Easting and False Northing are 0) W and S are used with the coordinates to show this.

190,370.34W 848,847.36S m

We will use this specific NAD_1983_Albers projection, which is the USA Contiguous Albers Equal Area Conic projection, for this exercise.

Go to <u>https://livingatlas.arcgis.com/</u> and search for 'elevation'. You should see that one of the first entries is 'Ground Surface Elevation 30 m' and if you read about this you see that this is 30m raster data extracted from the USGS's National Elevation Dataset. We will use this DEM in this exercise, but loading it directly from ArcPro.

Select Add Data to the Map

And among the options presented, select Living Atlas.

) () () () () () () () () () () () () ()	Atlas ► ح 🖑 S	earch Portal: Living Atlas
rganize 🔻 New Item 🔻		🗘 🖽 Categories
🗟 Project	Name	Type Date
🛜 Databases	🖽 World Imagery	Tile Layer 9/6/2
🛜 Folders	🔁 World Topographic Map	Tile Layer 9/6/2
🙆 Portal	🖽 World Street Map	Tile Layer 9/6/2
🛞 My Content	🖽 USA Topo Maps	Tile Layer 1/18/
😪 Groups	🔳 Terrain	Imagery Layer 6/20/
All Portal	📓 World Traffic Service	Map Image Layer 11/10
💿 Living Atlas	🔁 National Geographic World	Map Tile Layer 8/3/2
Computer	B World Transportation	Tile Laver 8/15/

In the **Search Portal: Living Atlas** type in **elevation** and among the options presented, select **Ground Surface Elevation 30 m**, the DEM identified in the web search.

Add Data X			
€) ♠ 🔣 « Living Atlas ► Sear	ch Result for 'elevation' 🕨 🔻 🕖 eleva	tion	× •
Organize 🔻 New Item 🔻		\$ 510	Categories 💌
🔺 🖻 Project 💧	Name	Туре	Date
🛜 Databases	Terrain: Elevation Tinted Hillshade	Imagery Layer	6/20/2018
Folders	Ground Surface Elevation - 30m	Imagery Layer	2/15/2017
🔺 🙆 Portal	TopoBathy Elevation Tinted Hillshade	Imagery Layer	6/20/2018
🛞 My Content	World Elevation GMTED	Imagery Layer	11/4/2016
😪 Groups	飅 Terrain: Multi-Directional Hillshade	Imagery Layer	6/20/2018
All Portal	🏾 Terrain: Slope in Degrees	Imagery Layer	6/20/2018
Living Atlas	🏾 Terrain: Slope Map	Imagery Layer	6/20/2018
🔺 [Computer	🔳 Terrain	Imagery Layer	6/20/2018
Desktop Find more items			Hereita and the second seco
Name Gro	und Surface Elevation - 30m De	fault	*
		OK	Cancel

This data could also have been downloaded from the National Map viewer,

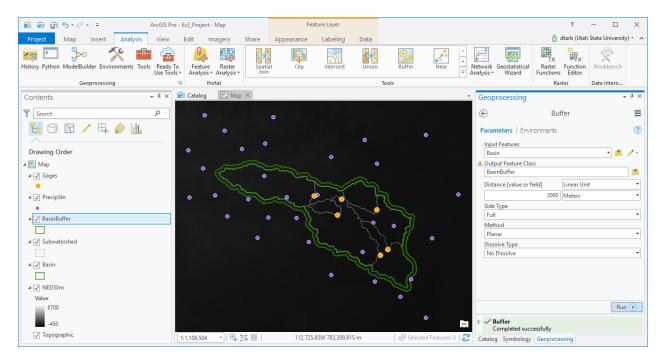
<u>http://viewer.nationalmap.gov/viewer/</u>, although the process is a bit more tedious. Here we are saving time taking advantage of the Living Atlas data services.

At this scale your map likely appears very dark as Texas is at low elevation compared to the range of elevation data in the US. Your map should look similar to the following:

Save your **Project** document if you have not already.

Let's export data from this DEM to have a local copy to work with. First we need to define the area that we want to work with. Let's pick an area that has a 2000 m buffer around the basin.

In the Geoprocessing Panel, use the search box to search on "buffer" and select the **Buffer** (Analysis) tool.

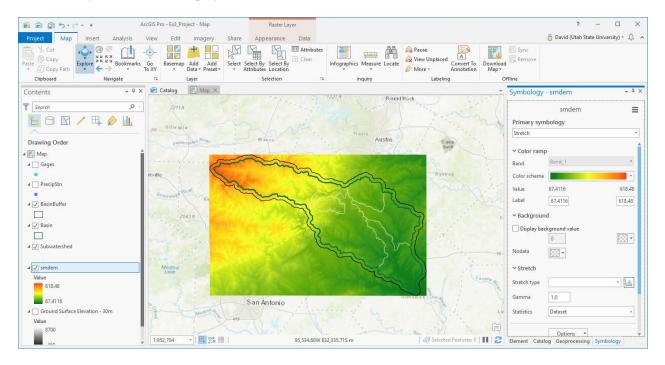

· ·	Geoprocessing	⊸ Џ
	(buffer	× •
	Search Results (5)	
	Suffer (Analysis Tools)	
Buffer (Ana	alysis Tools)	
Creates buff	fer polygons around input features to a specified	distanc

Set the inputs as follows and **Run** the tool.

Geoprocessing 🗾 👻 🖣		
🕞 Buf	fer 🔳	
Parameters Environmer	nts 🕐	
Input Features		
Basin	* 🧎 🦯 * .	
Output Feature Class		
sktop\Ex3\SanMarcos.gdb	\BaseMap\BasinBuffer 📄	
Distance [value or field]	Linear Unit 🔹	
2000	Meters •	
Side Type		
Full	-	
Method		
Planar -		
Dissolve Type		
No Dissolve	-	

Note that I saved the result in the San Marcos.gdb Basemap feature dataset.

The result should be a polygon that is 2000 m larger around the edge of the basin. If necessary, use the Symbology tool to change the Buffer symbology to an **Outline** and then you can see the other feature classes underneath it.

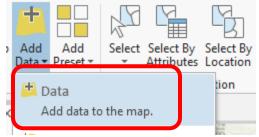

Use the search box to search on "clip" and select the **Clip** (**Data Management**) tool. This tool was chosen because one of its allowable inputs is an image service.

Geoprocessing	- † ×		
Clip	× · =		
Search Results (13)			
Clip (Analysis Tools)			
Clip (Data Management Tools)			
Clip (Data Management Tools)			
Cuts out a portion of a raster dataset, mosaic dataset, or image	e service layer.		
	Geoprocessing		→ ₽ ×
	e	Clip	_2
Clip (Data Management Tools)	Parameters Envi	ronments	?
Cuts out a portion of a raster dataset, mosaic dataset, or image service layer.	* Input Raster		
			•
	Output Extent		•
Clip	* Rectangle		2
	+	+	
	+	t	
	* Output Raster Data	set	
	NoData Value		

Set the inputs as follows (setting the output to go into SanMarcos.gdb) and **Run** the tool.

Geoprocessing	≁ Ū ×
€ Cli	ip 불
Parameters Environmer	nts 🥐
Input Raster	
Ground Surface Elevation -	- 30m 🔹 🧰
Output Extent	
BasinBuffer	
Rectangle	2
-253442.119935468	→ -131759.203299107
-1229479.29505731	↑ -1144129.96424694
Use Input Features for C	lipping Geometry
Output Raster Dataset	
C:\Users\dt\Desktop\Ex3\Sa	anMarcos.gdb\smdem 🗃
NoData Value	
-3.402823e+38	
Maintain Clipping Exten	t

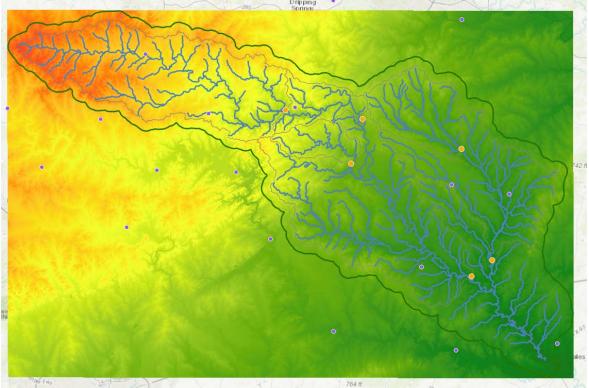
You should have a raster layer added to your ArcMap with a local subset from the DEM, that has the extent of BasinBuffer and is easier to symbolize. Turn off the Gages, PrecipStn and Ground Surface Elevation layers to see this display.



If you examine the **Layer Properties** for **Source ->Raster Information** for this you will see that it has a cell size of 30.92 m and **North America Albers Equal Area Conic** spatial reference. This is the resolution and coordinate system of the data as obtained from the ArcGIS elevation image service. If you look at its spatial reference, you'll see it has the same projection type (Albers) and Geographic Coordinate System (NAD83) but the projection parameters are different from those of the BaseMap feature dataset for the San Marcos Basin that we're working with. These parameters are appropriate for display for all of North America, not just for the continental US.

eral	✓ Spatial Reference	✓ Spatial Reference	
tadata I rce	Projected Coordinate System	North America Albers Equal Area Conic	
tion	Projection	Albers	
he	WKID	102008	
s	Authority	Esri	
ates	Linear Unit	Meter (1.0)	
	False Easting	0.0	
	False Northing	0.0	
	Central Meridian	-96.0	
	Standard Parallel 1	20.0	
	Standard Parallel 2	60.0	
	Latitude Of Origin	40.0	

Let's add streams from NHDPlus for visualization. In exercise 2 you produced should have extracted a subset of the NHD Plus Flowline dataset into your Exercise 2 Geodatabase. Let's add this to the map.


Select Add data

In the Add Data window navigate to the geodatabase from Exercise 2 and choose Flowline

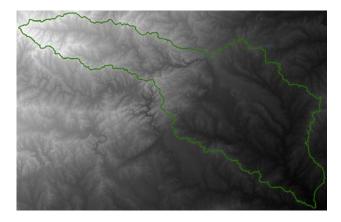
Add Data			×
€ ∋ ♠ 💽 ► Computer ► Des	ktop → Ex2 → Exercise2 → Exerc	cise2.gdb ► SanMarcos	• ひ
Organize 🔻 New Item 🔻			1 ===
🔺 🖻 Project	Name	Туре	Date
🗟 Databases	🖾 Basin	File Geodatabase F	
🛜 Folders	🖾 Catchment	File Geodatabase F	
🔺 🙆 Portal	☑ CatchmentSM	File Geodatabase F	
A My Content	🕂 Flowline	File Geodatabase F	
🙀 Groups	🖸 Gages	File Geodatabase F	
🦳 All Portal	🖾 Subwatershed	File Geodatabase F	
Living Atlas			
🖌 📋 Computer			
🧮 Desktop			
Consuments			•
Name		Default	*
		OK	Cancel

This should add the flowlines from Exercise 2 into your map.

2. Projecting the DEM

It is desirable to work with data in consistent coordinate systems. Let's project this DEM into the same projection as the BaseMap Feature dataset provided (as we noted above the DEM from the web service was in a slightly different coordinate system). Open the Toolbox and open the tool **Data Management Tools** \rightarrow **Projections and Transformations** \rightarrow **Raster** \rightarrow **Project Raster**. If you find this tool hard to locate,

Projections and Transformations					
	🔺 🚔 Raster				
	🔨 Flip				
	🔨 Mirror				
	Project Raster				
	1 1 C '				

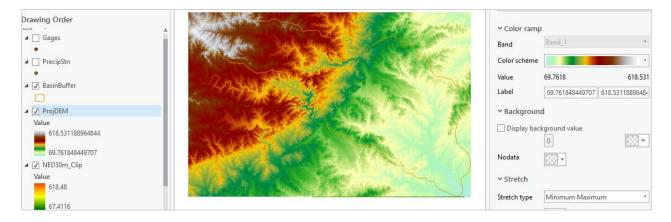

you can also search for it:

Geoprocessing	Ŧ	џ	3
🕞 project raster	×	-	
Search Results (82)			_
Second States (Data Management Tools)			

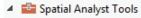
Set the inputs as follows to produce a projected raster **ProjDEM** in SanMarcos.gdb geodatabase with **30m** cells and the NAD 1983 Albers projection. Note that the **NAD 1983 Albers** projection is most easily set by clicking next to Output Coordinate System and selecting from existing Layers on the map.

Geoprocessing 🗸	Coordinate System
Project Raster	Select the Coordinate System to view the available options.
Parameters Environments	Image: Content xit Image: Declaris Content xit Image: Content xit Image: Content xit Image: Content xit Image: Content xit Image: Content xit Image: Content xit
Input Raster	XY Coordinate Systems Available
Output Paster Datacet sers\dt\Desktop\giswr2017\Ex3\SanMarcos.gdb\ProjDEM Output Coordinate System NAD_1983_Albers	Layers D MAD 1983 Albers D MAD 1983 Albers Conic D WGS 1984 Web Mercator Auxiliary Sphere
Geographic Transformation	
Resampling Technique Cubic convolution	
Output Cell Size	+
X 30 Y	30
Registration Point Y	

The result should appear similar to:


The spatial information about ProjDEM can be found by right clicking on the ProjDEM layer, then clicking on **Properties** \rightarrow **Source** \rightarrow **Raster Information**, and **Statistics**

✓ Raster Information						
	Columns		4222			
	Rows Number of Bands		2745			
			1	1		
	Cell Size X		30			
	Cell Size Y		30			
	Uncompresse	d Size	44.21 MB			
	Format		FGDBR			
	Source Type		Elevation			
	Pixel Type Pixel Depth		floating point			
			32 Bit			
	NoData Value					
	Colormap		absent			
	Pyramids Compression Mensuration Capabilities		level: 5, resampling: Nearest Neighbor			
			LZ77			
			Basic			
✓ Statistics Build Parameters: skipped columns: 1, rows: 1, ignored value(s): None						
	Band Name Minimum			Maximum	Mean	Std. Deviation
	Band_1	69.76184844	49707	618.53118896484	259.29586895443	116.28632131283

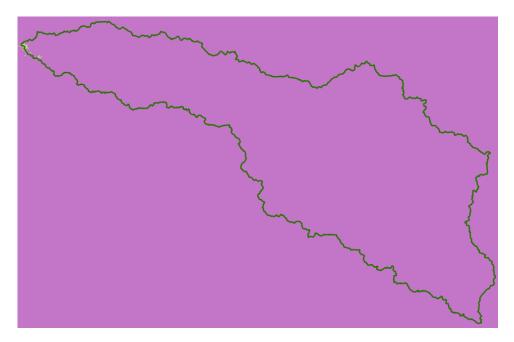

To turn in: The number of columns and rows in the projected DEM. The cell size of the projected DEM. The minimum and maximum elevations in the projected DEM.

3. Exploring the DEM

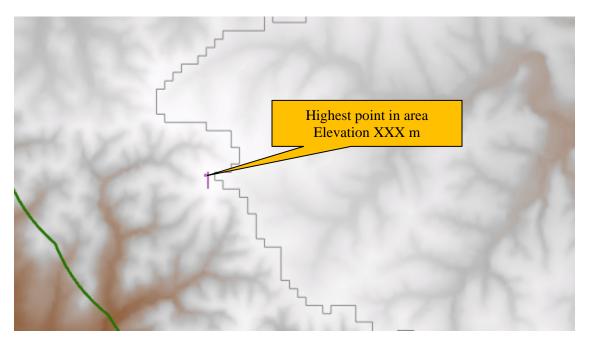
Change the symbology of the ProjDEM layer.

To explore the highest elevation areas in your DEM select Spatial Analyst Tools \rightarrow Map Algebra \rightarrow Raster Calculator.

- Conditional
 Conditional
 Conditional
 Conditional
 Conditional
 Conditional
 Conditional
- Extraction
 Generalization
- Groundwater
- E Mydrology
- Interpolation
- 🖻 🖾 Local
- 🔺 🚋 Map Algebra


|--|

Double click on the **ProjDEM** layer with the DEM for San Marcos. Click on the greater than ">" symbol and select a number less than the maximum elevation. This arithmetic raster operation will select all cells with values above the defined threshold. In the example below a threshold of 600m was used.

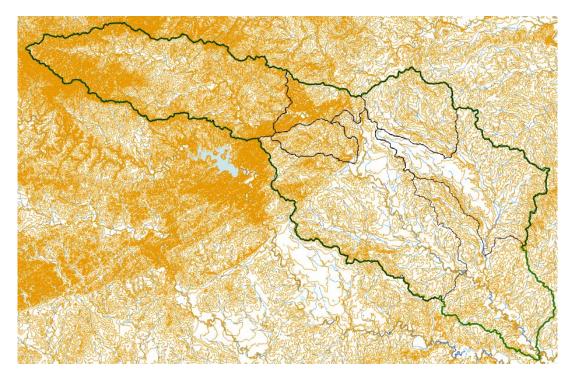

Geoprocessing - 4 ×				
\odot	€ Raster Calculator			
Parameters Envi	ronments	?		
Map Algebra expres Rasters	ssion 崖 Tools	T		
ProjDEM	==			
📒 smdem	>			
NED30m	<			
	<=			
	>=			
"ProjDEM" > 60	00			
		۵		
Output raster		(H)		
ProjDEM600		<u> </u>		

A new layer appears on your map. The majority of the map (pink color in the figure below) has a 0 value representing false (values below the threshold), and the lime-green region has a value of 1 representing

true (elevations higher than 600 meters). If necessary, change the symbology of the resulting map display so that you can see high elevation areas more clearly and zoom in on them.

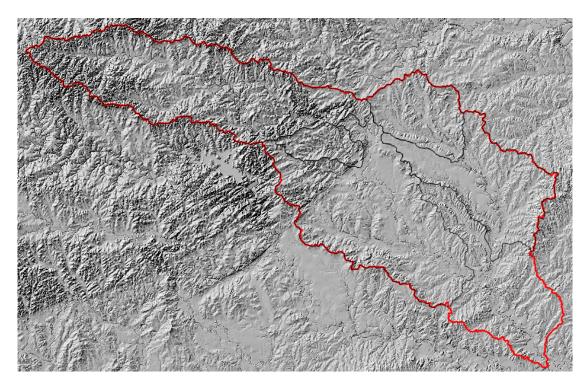
Use the raster calculator again (with elevation 618 meter threshold) and the explore tool to identify the grid cell of maximum elevation in **ProjDEM**. Take a screen shot similar to the below and indicate the grid cell with the highest elevation

Note that the above label was placed on the screen shot using a word processor. This is a bit easier than fiddling with labels in ArcGIS.


To turn in: A screen shot showing the location of the highest elevation value in the San Marcos DEM.

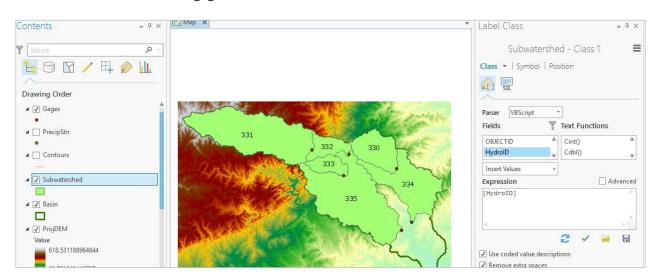
4. Contours and Hillshade

Contours are a useful way to visualize topography. Select **Spatial Analyst Tools** \rightarrow **Surface** \rightarrow **Contour**. Select the inputs as follows, with a 10m contour interval:


Geopro	cessing		→ ₽ ×
	Cont	tour	_3
Paramet	ers Environmer	its	?
Input ra	ster		
ProjDE	Μ		- 📄
Output	feature class		
Contou	urs		
* Contour	r interval		10
Base cor	ntour		0
Z factor			1
Contou	r type		
Contou	ır		-

A layer is generated with the topographic contours for San Marcos. Notice the big difference in Terrain Relief to the west of the basin compared to the east. This results from the fact that the Balcones fault zone runs through the middle of this basin, to the west of which lies the rolling Texas hill country and to the east the flatter coastal plain. There is a tower located in the City of San Marcos on which you can stand and see these differences in topography to east and west!

Another option to provide a nice visualization of topography is Hillshading. Select **Spatial Analyst Tools** \rightarrow **Surface** \rightarrow **Hillshade** and set the factor Z to a higher value to get a dramatic effect and leave the other parameters at their defaults (the following hillshade is produced with a Z factor of 10). Click OK. You should see an illuminated hillshaded view of the topography.


Geoprocessing		≁ Ū ×
\odot	Hillshade	4
Parameters Env	vironments	?
Input raster		
ProjDEM		-
Output raster		
Hillshade		
Azimuth		315
Altitude		45
Model shadow	s	
Z factor		10

To turn in: A layout with a depiction of topography either with elevation, contour <u>or</u> hillshade in nice colors. Include the streams from NHDPlus and Basin and sub-watersheds from the SanMarcos.gdb Basemap feature dataset.

5. Zonal Average Calculations

In hydrology it is often necessary to obtain average properties over watersheds or subwatersheds. The Zonal functions in Spatial Analyst are useful for this purpose. If you rearrange the map display as shown below and label the **Subwatersheds** with the attribute **HydroID**, you'll see that there is a unique Subwatershed for each stream gage location.

Select Spatial Analyst Tools \rightarrow Zonal \rightarrow Zonal Statistics as Table. Set the inputs as follows:

 Zonal Statistics as Table Parameters Environments Input raster or feature zone data Subwatershed Zone field HydroID Input value raster ProjDEM Output table
Input raster or feature zone data Subwatershed Zone field HydroID Input value raster ProjDEM Image: Submathing the s
Subwatershed Subwatershed Zone field HydroID Input value raster ProjDEM
Zone field HydroID Input value raster ProjDEM
HydroID Input value raster ProjDEM
Input value raster ProjDEM
ProjDEM 🔹
Output table
Output table
esktop\Ex3\Ex3_Project\Ex3_Project.gdb\zoneelev
✓ Ignore NoData in calculations
Statistics type
All

Click OK. A table with zonal statistics is evaluated and added to the map (at the bottom of the map display). Right-click to **open** the table.

	zoneelev 🗙	¢ .									
Fie	Field: 📰 New 📰 Delete 📰 Calculate Selection: 🕮 Zoom To 🔀 Switch 🔽 Clear 🗙 Delete										
	OBJECTID	HydroID	COUNT	AREA	MIN	MAX	RANGE	MEAN	STD	SUM	
	1	330	323069	290762100	133.912979	271.634399	137.72142	189.860326	25.141791	61337985.784241	
	2	331	1023567	921210300	243.430069	616.406372	372.976303	418.479394	80.454873	428341697.464828	
	3	332	165683	149114700	186.6521	402.4935	215.8414	288.565955	40.668827	47810473.124252	
	4	333	140798	126718200	173.553955	392.025085	218.47113	266.105394	43.421187	37467107.250351	
	5	334	579142	521227800	98.129776	214.013489	115.883713	151.936372	22.415665	87992734.571007	
	6	335	1089142	980227800	98.632591	410.593994	311.961403	183.533981	51.065948	199894567.148315	

This contains statistics of the value raster, in this case elevation from **ProjDEM** over the zones defined by the polygon feature class **Subwatershed**. The Value field in this zone table contains the HydroID from the subwatershed layer and may be used to join these values with attributes of the Subwatershed feature class.

Right click on Subwatershed and select **Joins and Relates** \rightarrow **Add Join**.

▲ 🗸 Subw	aters	hed			
	ß	Сору			
⊿ 🗸 Basin	Ē×	Remove			
		Group			
⊿		Attribute Table			
▶ 🗌 Basir		Design	Þ		
▲ 🗸 Hills		Joins and Relates	•	F	<u>A</u> dd Join

Select HydroID as the field in this layer (Subwatershed) that the join will be based on, zoneelev as the table to join to this layer, and HydroID again as the field in the table to base the join on.

Geoproce	ssing	~ ₽ ×				
	Add Join	\equiv^4				
Parameters	s Environments	?				
Layer Nam	e or Table View					
Subwatershed 🔹						
🛕 Input Join	Field					
HydroID		-				
Join Table						
zoneelev		• 🚞				
Output Joi	n Field					
HydroID		-				
🗸 Кеер А	II Target Features					

Note the warning, which states: "The join field HydroID in the join table Subwatershed is not indexed. To improve performance, we recommend that an index be created for the join field in the join table."

This warning can be ignored for this particular dataset because this table is sufficiently small, so the presence of indices to speed up the data queries does not make any noticeable difference.

Open the Subwatershed attribute table and scroll across. You'll see the statistics have been added to the attributes that this feature class already held.

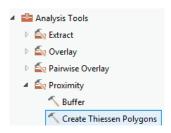
Field: 📰 Add 🕎 Delete 📰 Calculate 🛛 Selection: 🧓 Zoom To 🚏 Switch 📃 Clear 💭 Delete												
1	SiteID	SiteName	OBJECTID	HydroID	COUNT	AREA	MIN	MAX	RANGE	MEAN	STD	SUM
978	08172400	Plum Ck at Lockhart,	1	330	323069	290762100	133.912979	271.634399	137.72142	189.860326	25.141791	61337985.784
131	08171000	Blanco Rv at Wimber	2	331	1023567	921210300	243.430069	616.406372	372.976303	418.479394	80.454873	428341697.464
983	08171300	Blanco Rv nr Kyle, Tx	3	332	165683	149114700	186.6521	402.4935	215.8414	288.565955	40.668827	47810473.124
954	08170500	San Marcos Rv at San	4	333	140798	126718200	173.553955	392.025085	218.47113	266.105394	43.421187	37467107.250
962	08173000	Plum Ck nr Luling, Tx	5	334	579142	521227800	98.129776	214.013489	115.883713	151.936372	22.415665	87992734.57
936	08172000	San Marcos Rv at Luli	6	335	1089142	980227800	98.632591	410.593994	311.961403	183.533981	51.065948	199894567.148
Click to add new row.												

In the Geoprocessing panel, select Table to Excel and specify Subwatershed as the input Table, and SubwatershedStats as output Excel file.

Geoprocessing	≁ Ū >	Geoprocessing	≁ † ×
E table to excel	× • =	€ Table To Excel	≡
Search Results (66)		Parameters Environments	?
		Input Table Subwatershed	- 🛤
		Output Excel File C:\GISWR2016\Ex3\SubwatershedStats.xls	1
		Use field alias as column header	
		ose domain and subtype description	

If you open up the resulting SubwatershedStats Excel file you'll see the descriptive statistics there for the San Marcos subwatersheds.

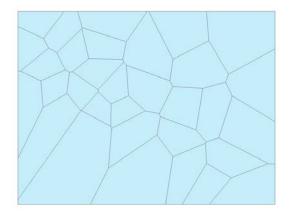
Determine the mean elevation and elevation range of each subwatershed in the SanMarcos Subwatershed feature class.


To turn in: A table giving the HydroID, Name, mean elevation, and elevation range for each subwatershed in the SanMarcos Subwatershed feature class. Which subwatershed has the highest mean elevation? Which subwatershed has the largest elevation range?

6. Calculation of Area Average Precipitation using Thiessen Polygons

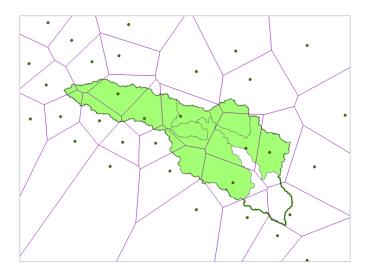
Now to do something really useful. We will calculate the area average mean annual precipitation over the watershed using Thiessen polygons. Thiessen polygons associate each point in a watershed with the nearest raingage. Turn on the **PrecipStn** stations in the map display and open their attribute table. You'll see an **AnnPrecip_in** attribute which is the mean annual precipitation at each gage in inches.

• •		ି 🕂 Switch	🔄 Clear 🗙 Delete		Ξ
	•	ELEVATION	ELEM	Nyr	AnnPrecip_in
•		200.6	ТРСР	24	35.175
331		146.3	ТРСР	6	34.515
• 332 330 333		533.4	ТРСР	19	32.607368
334		118.3	ТРСР	6	30.798333
335	٠	417.6	ТРСР	25	35.8844
		335.3	ТРСР	20	35.657
· · · · · · · · · · · · · · · · · · ·		304.8	ТРСР	17	39.082353
•		94.5	ТРСР	10	37.358
	4	437.4	ТРСР	11	38.551818

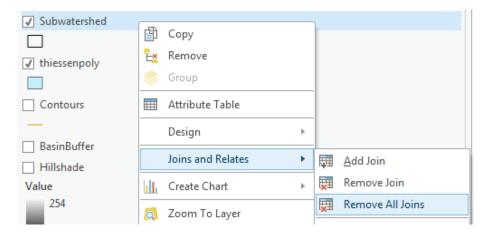

Select the tool Analysis Tools → Proximity → Create Thiessen Polygons

Specify **PrecipStn** as the Input Features. Save the output feature class in the BaseMap feature dataset and indicate that **ALL** fields should be output. By saving to the BaseMap feature dataset you ensure that the Thiessen polygon feature class inherits the spatial reference information from this feature dataset, keeping all your work in a consistent spatial reference. Click OK. It's really important that you select "All" here to carry the attributes of the Precipitation stations to the polygons associated with them.

Geoprocessing	≁ ų ×
Create Thiessen Polygons	4
Parameters Environments	?
Input Features	
PrecipStn 👻	🗎 🦯 🕤
Output Feature Class	
thiessenpoly	
Output Fields All fields	•

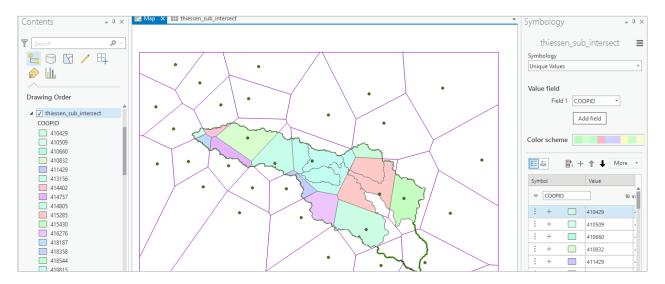

The result is a Thiessen polygon feature class. This tessellates the landscape into regions that are closer to a particular gage than to any other.

Here is what your attribute table should look like for thissen polygons. If it doesn't have all these attributes at the right hand end, delete the result you just computed and do it over with the ALL option selected to make sure you transfer all the attributes from the gages to the polygons.


thiessenpol	y X											
Field: 🖽 New 👼 Delete 🖽 Calculate Selection: 🦣 Zoom To 🕅 Switch 🕜 Clear 🗙 Delete												
■ OBJECTID	Shape	Shape_Length	Shape_Area	Input_FID	COOPID	stname	latdd	longdd	ELEVATION	ELEM	Nyr	AnnPrecip_ir
1	Polygon	219160.88469	2743248246.425552	6	411215	BULVERDE	29.75	-98.45	335.3	ТРСР	20	35.657
2	Polygon	180867.160187	1912782695.771555	27	418187	SEGUIN 1 SSW	29.55	-97.966667	153.3	ТРСР	14	35.712857
3	Polygon	115197.971824	721528046.483713	15	413622	GONZALES 1N	29.533333	-97.45	115.8	ТРСР	25	35.1448
4	Polygon	144172.839934	1126878591.586405	29	418415	SMITHVILLE	30.016667	-97.15	103.6	ТРСР	20	36.1115
5	Polygon	122727.252192	994385367.29268	2	410429	AUSTIN-BERGSTRO	30.183333	-97.683333	146.3	TPCP	6	34.515
6	Polygon	109158.064602	742107271.512506	32	419815	WIMBERLEY 1 NW	30	-98.066667	253	ТРСР	21	40.47619
7	Polygon	77451.84468	352989955.07953	28	418358	SISTERDALE	29.983333	-98.733333	426.7	TPCP	11	40.497273
8	Polygon	89625.880912	429818644.007928	31	418877	TEAGUE RANCH	30.433333	-98.816667	496.8	ТРСР	25	32.5052
9	Polygon	131274.279442	1012438076.842714	1	410428	AUSTIN MUELLER M	30.316667	-97.766667	200.6	ТРСР	24	35.175
10	Polygon	164610.415862	1717347186.543875	11	412820	ELGIN	30.35	-97.366667	176.5	ТРСР	26	35.094231
11	Polygon	125274.58415	834148826.922078	24	416276	NEW BRAUNFELS	29.733333	-98.116667	216.4	ТРСР	17	34.270588
12	Polygon	98482.889825	579456544.809058	21	414805	KINGSBURY	29.683333	-97.766667	155.4	ТРСР	7	38.788571
13	Polygon	144148.611523	1227871182.469289	18	414575	JEDDO 3S	29.766667	-97.316667	126.5	ТРСР	21	38.240952
14	Polygon	99985.574528	549126330.644352	16	413624	GONZALES 10 SW	29.433333	-97.516667	111.3	ТРСР	9	37.571111
15	Polygon	135071.554432	946265922.719634	8	411671	CHEAPSIDE	29.316667	-97.35	94.5	ТРСР	10	37.358
16	Polygon	121607.561971	788948118.508672	4	410660	BELMONT	29.516667	-97.683333	118.3	ТРСР	6	30.798333
17	Polygon	111466.266672	754447386.159967	23	415430	LULING 12 NE	29.833333	-97.566667	135.6	ТРСР	10	36.803
18	Polygon	104164.265515	674860878.823766	22	415285	LOCKHART 2 SW	29.85	-97.7	149.4	ТРСР	10	36.125

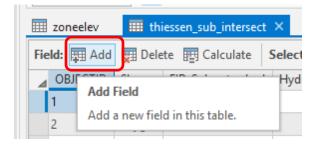
If you rearrange the map display you can get a map looking something like the below. What we're going to do is to find the area of each thiessen polygon that overlays each subwatershed. This is done using the **Intersect** function, one of the most powerful functions of spatial analysis.

To average precipitation values in these polygons over the subwatersheds we need to intersect the thiessen polygons with the subwatersheds and compute area weighted averages for each subwatershed. The following calculations achieve this.


First right click on the Subwatershed layer and remove all joins (to remove the join with zonelev that we created earlier).

Use the search window to locate the Intersect (Analysis) tool and set the inputs as follows

Geoproc	essing	≁ ų ×
	Intersect	5
Paramete	ers Environments	?
Input Fea	atures 😔 🛛 🛛 Ranks	
Sub	watershed 🔹 🧰	
thie	ssenpoly 🝷 🧰	
Output F	eature Class	
thiessen	_sub_intersect	
Attribute	s To Join	
All attrib	outes	•
XY Tolera	ance	
	Meters	•
Output T	уре	
Same as	; input	•


Following is the result, the thiessen_sub_intersect polygons symbolized with **COOPID** as the Unique Value field – this is the identifying number of the rain gage in the cooperative program by which volunteers supply precipitation data from their gages to the National Weather Service.

If you open the ThiessenSubIntersect attributed table you will see that from the 6 subwatersheds there are now 24 polygons, each contributing to part of a subwatershed and associated with a single rain gage. Let P_k denote the precipitation associated with each rain gage and A_{ik} the area of intersected polygon associated with rain gage k and subwatershed i. Then the area weighted precipitation associated with each subwatershed is

$$P_i = \frac{\sum_k A_{ik} P_k}{\sum_k A_{ik}}$$

Open the attribute table for the intersected thiessen polygons and add a new field to the table, APProd.

Double-click on the greyed-out "Data Type" column, where it says Long, and change the Data Type of APProd to **Float**. If you don't change this data type, your calculations will fail on a datatype mismatch error.

Cu	irrent Layer	thiessen	_sub_intersect	*							
⊿	✓ Visible	Read Only	Field Name	Alias	Data Type	✓ Allow NULL	🗌 Highlight	Number Format	Domain	Default	Length
	1		HydroID	HydroID	Long	J		Numeric			
	1		SiteID	SiteID	Text	1					1
	1		SiteName	SiteName	Text	1					5
	1		FID_thiessenpoly	FID_thiessenpoly	Long	1		Numeric			
	1		Input_FID	Input_FID	Long	1		Numeric			
	1		COOPID	COOPID	Double	1		Numeric			
	1		stname	stname	Text	1					25
	1		latdd	latdd	Double	1		Numeric			
	1		longdd	longdd	Short	1		Numeric			
	1		ELEVATION	ELEVATION	Long	1		Numeric			
	1		ELEM	ELEM	Float	1					25
	1		Nyr	Nyr	Double	1		Numeric			
	1		AnnPrecip_in	AnnPrecip_in	Date Text	1		Numeric			
	1	1	Shape_Length	Shape_Length	Blob	1		Numeric			
	1	1	Shape_Area	Shape_Area	Guid	1		Numeric			
ľ	1		APProd		Long 👻	1					

Make sure to save your changes using the save button in the **Fields** tab at the top of the screen.

	FIELDS	INSERT	ANALYSIS	VIEW	SHARE		
e	Domain	s Subtypes	Filter Name: Filter Domain:			New	Rave
	De	esign		Filter		Cha	nges

Go back to the thiessen_sub_intersect polygon attribute table and right-click on the header of APProd, selecting "Calculate Field".

🗄 thiessen_sub_intersect 🗙 🖫 Fields: thiessen_sub_intersect 🗸														
Field: 📰	New 🚦	📰 Delete	🔄 Calcu	ulate Selection: 🕂	Zoom To 🛛	Switch	Clear 🗙 🛛						Ξ	
⊿iessenpo	ly Inp	put_FID	COOPID	stname	latdd	longdd	ELEVATION	ELEM	Nyr	AnnPrecip_in	Shape_Length	Shape_Area	APProd	
	5	2	410429	AUSTIN-BERGSTRO	30.183333	-97.683333	146.3	ТРСР	6	34.515	51277.895967	77596679.322343	<nul 2="" sort<="" td=""><td><u>A</u>scending</td></nul>	<u>A</u> scending
	6	32	419815	WIMBERLEY 1 NW	30	-98.066667	253	ТРСР	21	40.47619	34427.447989	44918977.209083	<nul a→="" sort<="" td=""><td><u>D</u>escending</td></nul>	<u>D</u> escending
	18	22	415285	LOCKHART 2 SW	29.85	-97.7	149.4	ТРСР	10	36.125	67155.210013	168254343.46856	<nul <u="" 🗘="">Cus</nul>	tom Sort
	6	32	419815	WIMBERLEY 1 NW	30	-98.066667	253	ТРСР	21	40.47619	66821.259515	120874333.043417	<nu cal<="" td="" 📖=""><td>ulate Field</td></nu>	ulate Field
	7	28	/18358	SISTERDALE	20 085555	-08 733333	426.7	TDCD	11	40 407273	31014 844286	2221///67 802020	< Nut	anace / fefa

Create the expression **!AnnPrecip_in! * !Shape_Area!** and click Run.

Geoprocessing		₩ ₽ ×	
\odot	Calculate Field		
Parameters Em Input Table thiessen_sub_inter Field Name Approd Expression Type		?	
Python 3 Expression Fields Iongdd ELEVATION ELEM Nyr AnnPrecip_in Shape_Length Shape_Area Approd Insert Values	Helpers .conjugate() .denominator() .imag() .numerator() .real() .as_integer_ration .fromhex() .hex() * / + -		
!AnnPrecip_ir	n! * !Shape_Area!	÷.	

The result is a new field with the numerator terms for the equation above. Now locate the column HydroID. These are unique identifiers for each Subwatershed. Right click on the header and select Summarize

Hydren	CitaTD		CitoMag
2́↓	Sort <u>A</u>	<u>A</u> scending	
Z.↓	Sort [<u>)</u> escending	9
: 1	<u>C</u> usto	om Sort	
8 🕎	Calcu	ılate Field	
5	Sumr	narize	
2			1

Carefully select the summary statistics you need. I selected the following: SiteName - First, Shape_Area - Sum, APProd – Sum, and the HydroID Case field. Click Run.

Geoprocessing • 4 ×							
€ Su	≡						
Parameters Envi	?						
Input Table							
thiessen_sub_inte	rsect		- 🧰				
Output Table							
thiessen_stats							
Statistics Field(s) Field 📀		Statistic Type					
SiteName	•	First	•				
Shape_Area	•	Sum	•				
Approd	•	Sum	•				
	•		•				
Case field 😔	Case field 🛇						
HydrolD			•				
			•				
L							

Navigate to your output table, and you'll see that the resulting table gives the numerator and denominator in the equation above for each subwatershed.

thiessen_sul	_intersect	🖷 Fields	thiessen_sub_intersect	t 🛄 thiessen_	stats 🗙
Field: 📰 New	🕎 Delete	e 🕎 Calculate	Selection: 🕀 Zoor	m To 📲 Switch 🛛	🖌 Clear 🛛 🗙 Del
⊿ OBJECTID	HydroID	FREQUENCY	FIRST_SiteName	SUM_Shape_Area	SUM_APProd
1	330	3	Plum Ck at Lockhart,	290769999.999987	10574586624
2	331	9	Blanco Rv at Wimber	921160000.000129	34843450746
3	332	1	Blanco Rv nr Kyle, Tx	149159999.999961	6037428736
4	333	1	San Marcos Rv at San	126659999.999955	5126714368
5	334	3	Plum Ck nr Luling, Tx	521279999.999982	19037601459
6	335	7	San Marcos Rv at Luli	980249999.999848	36849504638.5

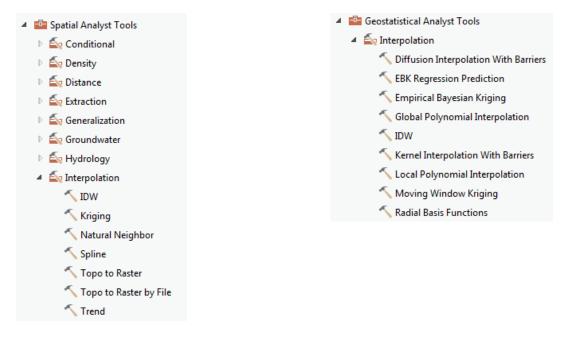
	thiessen_sul	_intersect	thiessen_stats	📲 Fields: 🖞	thiessen_stat	s 🗙
Cı	urrent Layer	thiessen_	essen_stats •			
⊿	✓ Visible	Read Only	Field Name	Alias	Data Type	Allow NULL
	1	1	OBJECTID	OBJECTID	Object ID	
	1		HydroID	HydroID	Long	1
	1		FREQUENCY	FREQUENCY	Long	1
	1		FIRST_SiteName	FIRST_SiteName	Text	1
	1		SUM_Shape_Area	SUM_Shape_Area	Double	1
	1		SUM_APProd	SUM_APProd	Double	1
	1		SubW_Precip_in	SubW_Precip_in	Float	1

Add a New field SubW_Precip_in to this table, again as a Float, and Save the result.

Go back to the thiessen_stats table and right click

iii thiessen_stats	🗙 🖷 Fields: thie	essen_stats				
Selection: 🕀 Zoom To 🔀 Switch 🔄 Clear 🗙 Delete						
RST_SiteName	SUM_Shape_Area	SUM_APProd	Sub	M/ D.		
um Ck at Lockhart,	290769999.999987	10574586624		ź₩	Sort <u>A</u> scending	
anco Rv at Wimber	921160000.000129	34843450746		Ā≁	Sort <u>D</u> escending	
anco Rv nr Kyle, Tx	149159999.999961	6037428736		\$	Custom Sort	
n Marcos Rv at San	126659999.999955	5126714368		圜	Calculate Field	
um Ck nr Luling, Tx	521279999.999982	19037601459		57	Summarize	
n Marcos Rv at Luli	980249999.999848	36849504638.5		~		
				₽	Fields	

and use Calculate Field to evaluate this as !Sum_APProd! / !Sum_Shape_Area!

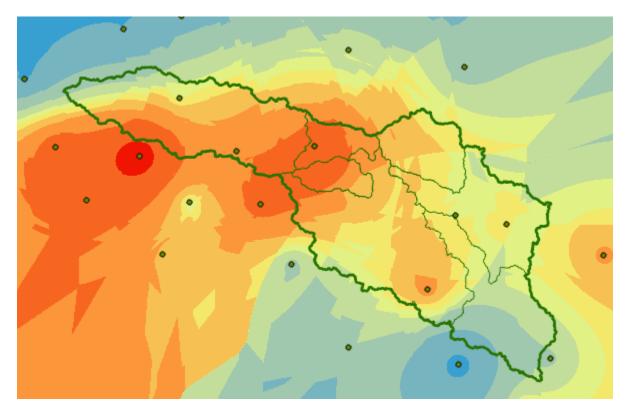

Geoprocessing	→ [1)
Calcula	ite Field	Ξ
Parameters Environme	nts	?
Input Table		
thiessen_stats	•	
Field Name		_
SubW_Precip_in	•	
Expression Type		_
Python 3	•	
Expression		
Fields T	Helpers 🕎	
OBJECTID	.conjugate()	
HydroID	.denominator()	
FREQUENCY	.imag()	
FIRST_SiteName	.numerator()	
SUM_Shape_Area	.real()	
SUM_Approd	.as_integer_ratio()	
SubW_Precip_in	.fromhex()	
	.hex() 🔻	
Insert Values 🔹	* / + - =	
SubW_Precip_in =		
!SUM_Approd! / !SUM	_Shape_Area!	

The result is the precipitation in inches for each subwatershed. This is pretty cool! And you can see how the tools in ArcGIS can give you a spatially area-weighted result that would be more tedious to derive otherwise.

To turn in: A table giving the HydroID, Name, and mean precipitation by the Thiessen method for each subwatershed in the SanMarcos Subwatershed feature class. Which subwatershed has the highest mean precipitation?

7. Estimate basin average mean annual precipitation using Spatial Interpolation/Surface fitting

Thiessen polygons were effectively a way of defining a field based on discrete data, by associating with each point the precipitation at the nearest gage. This is probably the simplest and least sophisticated form of spatial interpolation. ArcGIS provides other spatial interpolation capabilities in both the Spatial Analyst and Geostatistical Analyst Toolboxes. Following are the interpolation tools in each.

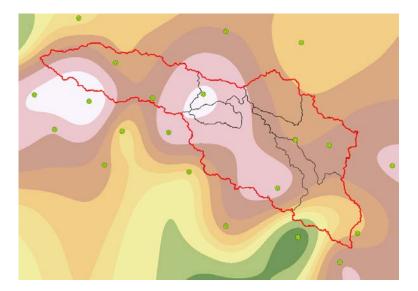


We will not, in this exercise, concern ourselves too much with the theory behind each of these methods. You should however be aware that there is a lot of statistical theory on the subject of interpolation, which is an active area of research. This theory should be considered before practical use of these methods.

In preparing this exercise we experimented with Empirical Bayesian Kriging which is reported to be one of the most advanced of these. We found that it took a very long time to complete, however you are welcome to try it with the following inputs. Use the input points from "PrecipStn" and Z value field as "AnnPrecip_in". Set the output cell size to 100 m to improve the spatial resolution.

Geoprocessing	≁ Ū ×
Empirical Bayesian Kriging	
Parameters Environments	?
Input features	
PrecipStn	- 🧰
Z value field	
AnnPrecip_in	•
Output geostatistical layer	
Output raster	
emp_bk	
Output cell size	
100	
Data transformation type	
None	•
Semivariogram model type	
Power	•
Additional Model Parameters	
Search Neighborhood Parameters	
Output Parameters	

Following is the result from Empirical Bayesian Kriging



The irregularity of the surface is displeasing.

Following are inputs for tension **Spline** interpolation (Spatial Analyst tools). Use the input points from **PrecipStn** and Z value field as **AnnPrecip_in**, and set the spline type as **Tension** with parameters as follows. I reduced the output cell size to 100 m to improve the spatial resolution. The result follows:

Geoprocessing	* ₽ ×				
🕞 Spli	ine 📑				
Parameters Environments					
Input point features PrecipStn	-				
Z value field					
AnnPrecip_in Output raster	•				
spline Output cell size	~				
100	🖬				
Spline type Tension	•				
Weight	0.1				
Number of points	12				

This runs a lot faster.

Now, let's use Zonal Statistics to compute the average value of the spline precipitation map over each subwatershed. Select **Spatial Analyst Tools** \rightarrow **Zonal** \rightarrow **Zonal Statistics as Table**. Set the inputs as follows:

Geoprocessing -									
€ Zonal Statistics as Table	≡								
Parameters Environments									
Input raster or feature zone data Subwatershed	- 🖽								
Zone field HydroID									
Input value raster									
spline Output table	- 🖻								
zonespline	(
✓ Ignore NoData in calculations Statistics type									
All	-								

Click Run. A table with zonal statistics is created. This contains statistics of the value raster, in this case mean annual precipitation from **Spline** over the zones defined by the polygon feature class **Subwatershed**.

III zonespline ×												
Field: 📰 New 🕎 Delete 🕎 Calculate 🛛 Selection: 🤠 Zoom To 🕅 Switch 🖸 Clear 🗙 Delete												
⊿	OBJECTID	HydroID	COUNT	AREA	MIN	MAX	RANGE	MEAN	STD	SUM		
	1	330	29077	290770000	35.096046	38.188869	3.092823	36.217122	0.733394	1053085.251297		
	2	331	92116	921160000	35.204449	42.596184	7.391735	37.891757	1.616637	3490437.066021		
	3	332	14916	149160000	38.079189	40.546021	2.466831	39.785346	0.631229	593438.21413		
	4	333	12666	126660000	38.473598	40.502689	2.029091	39.656497	0.544171	502289.195576		

The HydroID in this table may be used to join it to the attribute table for the Subwatershed feature class. As for the elevations above this joined statistics table can be exported to Excel for formatting to prepare your turn in results.

To turn in: A table giving the HydroID, Name, and mean precipitation by the Tension Spline method for each subwatershed in the SanMarcos Subwatershed feature class. Which subwatershed has the highest mean precipitation using a Tension Spline interpolation?

Summary of Items to turn in:

1. Hand calculations of slope at point A using each of the three methods and comments on the differences.

2. Table giving slope, aspect, hydrologic slope and flow direction at grid cells A and B. For hydrologic slope report results from both D8 and DINF methods. Include in your solution diagrams or sketches that define or indicate what each of these numbers means for the specific values obtained for cells A and B.

3. A screen capture of your final model builder model.

4. A table giving the minimum and maximum values of each of the six outputs Slope, Aspect, Flow Direction and Hydrologic Slope (Percentage drop) by D8 and Flow Direction and Hydrologic Slope (Percentage drop) by DINF for the digital elevation model in demo.asc. Also turn in a screen shot of the FlowDirDinf raster calculated using this model

5. The number of columns and rows in the projected DEM. The cell size of the projected DEM. The minimum and maximum elevations in the projected DEM.

6. A screen shot showing the location of the highest elevation value in the San Marcos DEM.

7. A layout with a depiction of topography either with elevation, contour <u>or</u> hillshade in nice colors. Include the streams from NHDPlus and Basin and sub-watersheds from the SanMarcos.gdb Basemap feature dataset.

8. A table giving the HydroID, Name, mean elevation, and elevation range for each subwatershed in the SanMarcos Subwatershed feature class. Which subwatershed has the highest mean elevation? Which subwatershed has the largest elevation range?

9. A table giving the HydroID, Name, and mean precipitation by the Thiessen method for each subwatershed in the SanMarcos Subwatershed feature class. Which subwatershed has the highest mean precipitation?

10. A table giving the HydroID, Name, and mean precipitation by the Tension Spline method for each subwatershed in the SanMarcos Subwatershed feature class. Which subwatershed has the highest mean precipitation using a Tension Spline interpolation?