Course Number: CE 365K
Course Title: Hydraulic Engineering Design
Course Instructor: R.J. Charbeneau

- Subject: Open Channel Hydraulics
- Topics Covered:

8. Open Channel Flow and Manning Equation
9. Energy, Specific Energy, and Gradually Varied Flow
10. Momentum (Hydraulic Jump)
11. Computation: Direct Step Method and Channel Transitions
12. Application of HEC-RAS
13. Design of Stable Channels

Topic 8: Open Channel Flow

Geomorphology of Natural Channels:
Geomorphology of natural channels concerns their shape and structure. Natural channels are of irregular shape, varying from approximately parabolic to approximately trapezoidal (Chow, 1959).

Trapezoidal fit

Channel Geometry Characteristics

- Depth, y
- Area, A
- Wetted perimeter, P
- Top width, T

Hydraulic Radius, $\mathrm{R}_{\mathrm{h}}=$ Area / Wetted perimeter Hydraulic Depth, $D_{h}=$ Area / Top width
3.4

Trapezoidal Channel

$$
A=(b+z y) y \quad ; \quad P=b+2 y \sqrt{1+z^{2}} \quad ; \quad T=b+2 z y
$$

Parabolic Channel

$$
z=a x^{2} \quad ; \quad T=2 \sqrt{\frac{y}{a}} ; A=\frac{4}{3} \sqrt{\frac{1}{a}} y^{3 / 2}=\frac{2}{3} T y
$$

If $0<(4 \text { a } y)^{1 / 2}<1$ Then

$$
P=T+\frac{8}{3} \frac{y^{2}}{T} \quad \rightarrow \quad R_{h}=\frac{\frac{2}{3} y}{1+\frac{8}{3}\left(\frac{y}{T}\right)^{2}} \approx \frac{2}{3} y
$$

Example \#12: Parabolic Channe/

A grassy swale with parabolic cross-section shape has top width $\mathrm{T}=6 \mathrm{~m}$ when depth $\mathrm{y}=0.6 \mathrm{~m}$ while carrying stormwater runoff. What is the hydraulic radius?

$$
\begin{gathered}
a=\frac{4 y}{T^{2}}=\frac{4 \times 0.6 \mathrm{~m}}{(6 \mathrm{~m})^{2}}=0.067 \mathrm{~m}^{-1} \rightarrow \\
R_{h}=\frac{\frac{2}{3} y}{1+\frac{8}{3}\left(\frac{y}{T}\right)^{2}}=0.390 \mathrm{~m} \cong \frac{2}{3} y
\end{gathered}
$$

Flow in Open Channels: Manning

Equation

Manning's equation is used to relate the average channel (conduit) velocity to energy loss, $\mathrm{S}_{\mathrm{f}}=\mathrm{h}_{\mathrm{f}} \mathrm{L}$.

Manning equation (metric units: m, s)

$$
V=\frac{1}{n} R_{h}^{2 / 3} S_{f}^{1 / 2} \leftrightarrow \quad Q=\frac{1}{n} A R_{h}^{2 / 3} S_{f}^{1 / 2}
$$

Manning Equation (Cont.)

$$
\frac{V}{R_{h}^{2 / 3}}=\frac{Q}{A R_{h}^{2 / 3}}=\frac{S_{f}^{1 / 2}}{n}\left[\frac{m^{1 / 3}}{s}\right]
$$

To change to US Customary units multiply by

$$
\phi=\left(L_{R}\right)^{1 / 3}=\left(3.28 \frac{f}{m}\right)^{1 / 3}=1.486
$$

General case

$$
Q=\frac{\phi}{n} A R_{h}^{2 / 3} S_{f}^{1 / 2}
$$

$$
\phi=1 \text { (metric) or } 1.486 \text { (English) }
$$

Channel Conveyance, K

For Manning's equation, K combines roughness and geometric characteristics of the channel

$$
K=(\phi / n) A R_{h}^{2 / 3}
$$

Manning's equation: $\mathrm{Q}=\mathrm{K} \mathrm{S}_{\mathrm{f}}^{1 / 2}$

Roughness and Manning's n

Equivalence between roughness size (k) and Manning's n :

$$
\mathrm{n}=0.034 \mathrm{k}^{1 / 6} \quad(\mathrm{k} \text { in } \mathrm{ft})
$$

Examples	n	$\mathrm{k}(\mathrm{cm})$
Concrete (finished)	0.012	0.06
Asphalt	0.016	0.3
Earth channel (gravel)	0.025	5
Natural channel (clean)	0.030	15
Floodplain (light brush)	0.050	300
	* Compare with Manning's n for sheet flow	

Grassed Channels

English Units (ft, s) vr, Product of Velocity and Hydraulic Radius, V_{h}
Figure 8.11, page 311

Example \#13: $Q_{\max }(c f s)=$

1. For grass channels, use Slide 3.11. Guess an initial value $\mathrm{n}=0.05$
2. Geometry:

Bottom width, $b=5 \mathrm{ft}(\sim)$
Side slope (z: 1), $z=2$
Maximum depth, $y=4 \mathrm{ft}$

-----------------------------1
Hydraulic radius, $R_{h}=2.3 \mathrm{ft}$
Velocity, $V=4.6 \mathrm{ft} / \mathrm{s}$

3.14	Trapezoidal Channel -- Normal and Critical Depth			
	$L=$ feet or meters, depending on the value of $g\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right.$ or $\left.9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$			
	$\mathrm{g}\left(\mathrm{L} / \mathrm{sec}^{2}\right)=32.2$			
Example \#13 (Cont.)				
	Normal Depth		Critical Depth	
$\begin{aligned} & V R_{h}>10 \mathrm{ft} 2 / \mathrm{s} \rightarrow n \\ & =0.03 \text { (slide 3.11) } \end{aligned}$$\begin{aligned} & \mathrm{Q}_{\max }= \\ & 400 \mathrm{cfs} \end{aligned}$	Bottom Width b (L) = Side Slope z : 1 = Manning's n $\mathrm{n}=$ Bottom Slope $S_{0}=$	Enter These	Depth and Discharge $y(L)=$ 3.700 $Q\left(L^{3} / s\right)=$ 500.0	
		Enter These		
			Froude Number	
			$\mathrm{Fr}^{2}=\quad 1.59$	
	Depth$y(L)=4.000$	Select This		
		Calculate This		
	Discharge			
	$\mathrm{Q}\left(\mathrm{L}^{3} / \mathrm{s}\right)=398.1$			
	Hydraulic Radius		Velocity	
	$\mathrm{R}_{\mathrm{h}}(\mathrm{L})=2.27$		$\mathrm{V}(\mathrm{L} / \mathrm{s})=7.66$	
	Area		Velocity Head	
	$A\left(L^{2}\right)=52.00$		$\mathrm{V}^{2} / 2 \mathrm{~g}(\mathrm{~L})=0.910$	
	Conveyance $K=\quad 4451$		Specific Energy $E(L)=4.910$	

Normal Depth

Normal depth is the depth of uniform flow in an prismatic open channel. Since the flow is uniform, the depth and discharge are related through Manning's equation with $S_{f}=S_{0}$.

$$
Q=\frac{\phi}{n} A R_{h}^{2 / 3} S_{o}^{1 / 2} \rightarrow y_{n}
$$

Given $\mathrm{Q}, \mathrm{n}, \mathrm{A}(\mathrm{y}), \mathrm{R}_{\mathrm{h}}(\mathrm{y})$ and S_{0} : solve for y_{n}

Waves (Small Disturbances) in a Moving Stream

Wave (disturbance) can move upstream if

$$
V<\sqrt{g D_{h}}\left(F r=\frac{V}{\sqrt{g D_{h}}}<1\right)
$$

Froude Number

Critical Depth - Froude number

Critical flow occurs when the velocity of water is the same as the speed at which disturbances of the free surface will move through shallow water. The speed or celerity of disturbances in shallow water is given by c = $\left(g D_{h}\right)^{1 / 2}$, where D_{h} is the hydraulic depth. Critical flow occurs when $v=c$, or more generally

$$
F r \equiv \frac{V}{\sqrt{g D_{h}}} \rightarrow \quad F r_{c}^{2}=\frac{(Q / A)^{2}}{g(A / T)}=\frac{Q^{2} T}{g A^{3}}=1 \quad \rightarrow \quad y_{c}
$$

Importantly, critical depth is independent of the channel slope.

Topic 9: Energy, Specific Energy, and Gradually Varied Flow

1D Energy Equation:

Closed Conduit:

$$
\left(\frac{V^{2}}{2 g}+\frac{p}{\gamma}+z\right)_{1}=\left(\frac{V^{2}}{2 g}+\frac{p}{\gamma}+z\right)_{2}+h_{L}
$$

Open Channel Flow:

$$
\begin{array}{r}
\left(\frac{V^{2}}{2 g}+y+z_{B}\right)_{1}=\left(\frac{V^{2}}{2 g}+y+z_{B}\right)_{2}+h_{L} \\
\mathrm{z}_{B} \rightarrow \mathrm{z} \text { hereafter }
\end{array}
$$

Energy in Open Channels

$\xrightarrow[\mathrm{S}_{\mathrm{f}}=-\mathrm{dH} / \mathrm{dx}]{\text { Friction Slope: }}$
Channel Slope:

$$
\xrightarrow[S_{0}=-d z / d x]{ }
$$

Kinetic
$\begin{aligned} & \text { Energy } \\ & \text { Correction } \\ & \text { Factor }\end{aligned} \quad \alpha=\frac{1}{A} \iint\left(\frac{V}{V_{\text {ave }}}\right)^{3} d A$
Factor

Specific Energy

What do we do with α ?

- For simple channels assume $\alpha=1$
- For complex channels (main channel plus left and right-bank floodplains), velocity variation at a given station can be significant, and α should be calculated and used in a 1D energy equation (HEC-RAS does this automatically!)

Kinetic Energy Coefficient, α

$$
\begin{aligned}
& A_{2}, P_{2}, n_{2} \\
& \alpha \frac{\bar{V}^{2}}{2 g}=\frac{\sum_{i} Q_{i}\left(\alpha_{i} V_{i}^{2} / 2 g\right)}{\sum_{i} Q_{i}} \longrightarrow \alpha=A^{2} \frac{\sum_{i}\left(\alpha_{i} K_{i}^{3} / A_{i}^{2}\right)}{\left(\sum_{i} K_{i}\right)^{3}}
\end{aligned}
$$

Specific Energy, E

Hydraulic energy head measured with respect to the local channel bottom, as a function of depth y

Specific Energy at Critical Flow

Rectangular channel: $D_{h}=y$

$$
\begin{aligned}
\mathrm{E}=\mathrm{V}^{2} / 2 \mathrm{~g}+\mathrm{y} & =\left[(1 / 2)\left(\mathrm{V}^{2} / \mathrm{gy}\right)+1\right] \mathrm{y} \\
& =(1 / 2+1) \mathrm{y}
\end{aligned}
$$

For critical flow (in a rectangular channel):

$$
\begin{aligned}
& y=(2 / 3) E \\
& V^{2} / 2 g=(1 / 3) E
\end{aligned}
$$

Energy Equation

$$
\mathrm{E}_{2}+\mathrm{z}_{2}=\mathrm{E}_{1}+\mathrm{z}_{1}+\mathrm{h}_{\mathrm{L}(2 \rightarrow 1)}
$$

$E=$ Specific Energy $=y+V^{2} / 2 g$

Head Loss:

- Major Losses - friction losses along channel
- Minor Losses - channel expansion and contraction

Friction Losses in Open Channel

 Flow:Slope of the EGL: $S_{f}=h_{f} / L$

Manning's equation: $\mathrm{Q}=\mathrm{K} \mathrm{S}_{\mathrm{f}}^{1 / 2}$

Bed-friction head loss: $h_{f}=(Q / K)^{2} L$

Minor (Expansion and Contraction)

 LossesEnergy losses at channel expansions and contractions

$$
h_{m}=C\left|\frac{V_{2}^{2}-V_{1}^{2}}{2 g}\right|=\frac{C Q^{2}}{2 g}\left|\frac{1}{A_{2}{ }^{2}}-\frac{1}{A_{1}^{2}}\right|
$$

Default values:
Channel Contraction - $\mathrm{C}=0.1$
Channel Expansion - $\quad \mathrm{C}=0.3$
Abrupt Expansion: $\quad(\mathrm{C}=1)$

$$
h_{m}=\frac{V^{2}}{2 g}
$$

Gradually Varied Flow Profiles

Physical laws governing the head variation in open channel flow

$$
\begin{aligned}
& H=\frac{V^{2}}{2 g}+y+z=E+z \\
& \left(-\frac{d}{d x}\right) H=\left(-\frac{d}{d x}\right)(E+z) \rightarrow S_{f}=-\frac{d E}{d x}+S_{o} \rightarrow S_{o}=S_{f}+\frac{d E}{d x}
\end{aligned}
$$

1) Gravity $\left(S_{0}\right)$ is the driving force for flow
2) If $\mathrm{S}_{\mathrm{o}}=\mathrm{S}_{\mathrm{f}}$ then $\mathrm{dE} / \mathrm{dx}=0$ and flow is uniform (normal depth)
3) Gravity $\left(\mathrm{S}_{\mathrm{o}}\right)$ is balanced by friction resistance $\left(\mathrm{S}_{\mathrm{f}}\right)$ and longitudinal adjustment in specific energy ($\mathrm{dE} / \mathrm{dx}$)
4) Adjustments in specific energy are constrained through specific energy diagram

Gradually Varied Flow: Mild Slope ($y_{n}>y_{c}$)

1. Point 1 (M1 Curve): $y>y_{n}$

$$
S_{o}=S_{f}+\frac{d E}{d x}
$$

$\rightarrow \mathrm{S}_{\mathrm{f}}<\mathrm{S}_{\mathrm{o}} \rightarrow \mathrm{dE} / \mathrm{dx}>0 \rightarrow$ depth increases downstream
2. Point 2 (M2 Curve): $y<y_{n}$ $\rightarrow \mathrm{S}_{\mathrm{f}}>\mathrm{S}_{0} \rightarrow \mathrm{dE} / \mathrm{dx}<0 \rightarrow$ depth decreases downstream
3. Point 3 (M3 Curve): $\mathrm{y}<\mathrm{y}_{\mathrm{c}}<$ $y_{n} \rightarrow S_{f}>S_{0} \rightarrow d E / d x<0$ \rightarrow depth increases downstream

Mild Slope

Note that for the M1 and M2 curves, the depth approaches normal depth in the direction of flow computation for subcritical flow.

Gradually Varied Flow: Steep Slope ($y_{n}<y_{c}$)

1. Point 1 (S1 Curve): $y>y_{c}>$

$$
S_{o}=S_{f}+\frac{d E}{d x}
$$

$\mathrm{y}_{\mathrm{n}} \rightarrow \mathrm{S}_{\mathrm{f}}<\mathrm{S}_{0} \rightarrow \mathrm{dE} / \mathrm{dx}>0$
\rightarrow depth increases downstream
2. Point 2 (S2 Curve): $y>y_{n}$ $\rightarrow \mathrm{S}_{\mathrm{f}}<\mathrm{S}_{\mathrm{o}} \rightarrow \mathrm{dE} / \mathrm{dx}>0 \rightarrow$ depth decreases downstream
3. Point 3 (S3 Curve): $y<y_{n}$ $\rightarrow \mathrm{S}_{\mathrm{f}}>\mathrm{S}_{\mathrm{o}} \rightarrow \mathrm{dE} / \mathrm{dx}<0 \rightarrow$ depth increases downstream

Steep Slope

Note that for curves S2 and S3 the depth approaches normal depth in the direction for flow computation for supercritical flow

Horizontal Slope ($S_{0}=0$)

$$
S_{o}=S_{f}+\frac{d E}{d x} \rightarrow S_{f}=-\frac{d E}{d y} \frac{d y}{d x}>0
$$

Topic 10: Momentum and Hydraulic Jump
 $y_{p}=$ depth to pressure center
 (X -section centroid)

Momentum Equation: $\Sigma \mathrm{F}=\rho \mathrm{Q}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$

$$
\gamma y_{p 1} A_{1}-\gamma y_{p 2} A_{2}-F_{B}=\rho Q^{2}\left(1 / A_{2}-1 / A_{1}\right)
$$

Write as: $\quad M_{1}=M_{2}+F_{B} / \gamma$

$$
\text { Specific Force: } M=y_{p} A+Q^{2} /(g A)
$$

Hydraulic Jump

Energy Loss and Length

Exercise: convince yourself that this is the same as $\Delta \mathrm{E}=\mathrm{E}_{1}-\mathrm{E}_{2}$.

Jump Length:

$$
L_{j}=6.9 y_{j}=6.9\left(y_{2}-y_{1}\right)
$$

Example \#14: Normal depth downstream in a trapezoidal channel is 1.795 m when the discharge is 15 $\mathrm{m}^{3} / \mathrm{s}$. What is the upstream sequent depth?

Answer:
1.065 m

How do you find the energy loss?
$\Delta \mathrm{E}=0.14 \mathrm{~m}$
Power $=20.6 \mathrm{~kW}$

Trapezoidal Channel
Specific Force $M=Q^{2} /(g A)+A y_{p}$
Lin feet or meters, depending on $g=32.2$ or 9.81
Gravity Constant
$\mathrm{g}\left(\mathrm{L} \mathrm{s}^{2}\right)=\quad 9.81$

Topic 11: Direct Step Method and

Channe/ Transitions

Returning to the Energy Equation

$$
\mathrm{E}_{2}+\mathrm{z}_{2}=\mathrm{E}_{1}+\mathrm{z}_{1}+\mathrm{h}_{\mathrm{L}}(2 \rightarrow 1)
$$

Step calculation

$$
z_{2}-z_{1}=S_{0} \Delta x
$$

$$
h_{L}(2 \rightarrow 1)=\bar{S}_{f} \Delta x+C\left|\Delta \frac{Q^{2}}{2 g A^{2}}\right|
$$

Solve for Δx :

$$
\Delta x=\frac{\mathrm{E}_{1}+\mathrm{C}\left|\Delta \frac{\mathrm{Q}^{2}}{2 g \mathrm{~A}^{2}}\right|-\mathrm{E}_{2}}{\mathrm{~S}_{\mathrm{o}}-\overline{\mathrm{S}}_{\mathrm{f}}}
$$

Direct Step Method: Approach

$$
\Delta x=\frac{\mathrm{E}_{1}+\mathrm{C}\left|\Delta \frac{\mathrm{Q}^{2}}{2 g \mathrm{~A}^{2}}\right|-\mathrm{E}_{2}}{\mathrm{~S}_{\mathrm{o}}-\overline{\mathrm{S}}_{\mathrm{f}}}
$$

In this case you select a sequence of depths and solve for the distance between them: $y_{1}, y_{2}, y_{3}, \ldots$

- With known y: $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{Q}^{2} / 2 \mathrm{gA} \mathrm{A}^{2}$, etc. are calculated
- The average friction slope is calculated from

$$
\bar{S}_{f}=\left(\frac{Q_{2}+Q_{1}}{K_{2}+K_{1}}\right)^{2}
$$

Example \#15: Channel Transition

What is the headwater upstream of a control section in a downstream box culvert: $\mathrm{Q}=10 \mathrm{~m}^{3} / \mathrm{s}$; channel $\mathrm{n}=0.025$

Control Section:

$$
\begin{aligned}
& V=\left(g D_{h}\right)^{0.5}=(g y)^{0.5} \rightarrow Q=(g y)^{0.5}(b y) \\
& y=\left[Q / b g^{0.5}\right]^{2 / 3}=1.37 \mathrm{~m}
\end{aligned}
$$

Example \#15 (Cont.): Specific Energy

A 1.37 m depth in the upstream channel (Section 1, blue) corresponds to specific energy E $=1.55 \mathrm{~m}$, compared with E $=2.05 \mathrm{~m}$ in the control section. The upstream E_{2} must exceed 2.05 m , which requires an increase in depth.

Trapezoidal Channel
$L=$ feet or meters, depending on value of g (32.2 or 9.81)

Example \#16: Specific Energy and Channel Transitions

- Trapezoidal channel with $\mathrm{b}=8 \mathrm{ft}, \mathrm{z}=2, \mathrm{n}=$ 0.030 . Normal depth occurs upstream and downstream.
- Rectangular culvert ($\mathrm{b}=5 \mathrm{ft}, \mathrm{n}=0.012$) added with concrete apron extending 10 feet downstream from culvert outlet.
- Develop flow profile, especially downstream of the culvert, for $\mathrm{Q}=250 \mathrm{cfs}$.

Ex. \#16 (Cont.): Normal and Critical Depth in Main Channel

Upstream and Downstream channel have
$y_{n}=3.13 \mathrm{ft}$
$y_{c}=2.51 \mathrm{ft}$
$y_{n}>y_{c} \rightarrow$ Mild Slope \rightarrow Downstream Control

3.44

Ex. \# 16 (Cont.): Normal and Critical Depth in Culvert

```
Trapezoidal Channel -- Normal and Critical Depth
\(L=\) feet or meters, depending on the value of \(g\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right.\) or \(\left.9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\)
```



```
\(y_{n}=4.22 \mathrm{ft}\)
\(y_{c}=4.26 \mathrm{ft}\)
```



```
\[
\mathrm{y}_{\mathrm{n}}<\mathrm{y}_{\mathrm{c}} \rightarrow \text { Steep Slope } \rightarrow \text { Upstream control }
\]
```


Ex. \#16 (Cont.): Specific Energy

 DiagramNormal depth:

$$
E=3.13 \mathrm{ft}
$$

Minimum specific energy in culvert:

$$
\mathrm{E}=6.40 \mathrm{ft}
$$

To enter the culvert from upstream, specific energy increased through M1 curve
(Culvert as "choke")

Ex. \#16 (Cont.) Upstream Transition and Entry to Culvert

Trapezoidal Channel
\rightarrow M1 Curve

Ex. \#16 (Cont.): Control in Culvert
$\mathrm{y}_{\mathrm{n}}<\mathrm{y}_{\mathrm{c}} \rightarrow$ Steep Slope \rightarrow Control at Culvert Entrance

S2 curve in culvert; normal depth reached before culvert end

Ex. \#16 (Cont.): Possible Depths at Concrete Apron

Set $y_{2}=y_{n}$ in culvert and adjust $y_{1}=y_{a}$ until $\Delta x=10 \mathrm{ft}$ for depth at end of concrete apron

[^0]
Ex. \#16 (Cont.): Which Depth for y_{a} ?

How do you determine which depth at the end of the culvert apron is correct?

The flow profile downstream of the apron must follow an M-curve (since $y_{c}<y_{n}$ in the downstream channel) and the depth must end in normal depth.

Normal depth is $\mathrm{y}_{\mathrm{n}}=3.13 \mathrm{ft}$ while $\mathrm{y}_{\mathrm{a}}=1.39 \mathrm{ft}$ or 5.74 ft .

Cannot reach normal depth from $y=5.74 \mathrm{ft}$ following an M1 curve.

Correct depth is $\mathrm{y}_{\mathrm{a}}=1.39 \mathrm{ft}$, which will follow an M3 curve leading to a hydraulic jump, which must end at normal depth (no M-curves approach normal depth in the downstream direction).

Ex. \#16 (Cont.): Transition to Apron

(Pt. 5)

End of culvert apron at Pt. 5. M3 Curve leading to Hydraulic Jump, which in turn exits at normal depth for the downstream channel

Ex. \#16 (Cont.): M3 Profile to

 Hydraulic Jump- How far does the flow profile follow the M3 curve downstream of the concrete apron?
- From this supercritical flow profile, the flow must reach subcritical flow at normal depth through a hydraulic jump.
- The flow profile must follow the M3 curve until the depth is appropriate for the jump to reach y_{n} (this is the sequent depth to y_{n}).

3.52

Ex. \#16 (Cont.): Estimation of Sequent Depth

Plot y versus specific force values. For $y=$ 3.13 ft , the specific force (M) value is $103.1 \mathrm{ft}^{3}$. Look for the sequent depth on the supercritical limb of the specific-force curve, to find $y_{s}=$ 1.97 feet.

Conclusion: the M3 curve is followed from a depth of $\mathrm{y}_{\mathrm{a}}=$ 1.39 ft to a depth of $y_{s}=1.97 \mathrm{ft}$, which marks the entry to a hydraulic jump.

Ex. \#16 (Cont.): Distance along M3 Curve and Jump Length

The Direct Step method may be used to estimate the distance along the M3-curve from the culvert apron to the entrance of the hydraulic jump.
Taking a single step, this distance is estimated to be 44 feet.

The jump length is calculated as
$L_{j}=6.9(3.13-1.97)=8 \mathrm{ft}$

Ex. \#16 (Cont.): Transition Example

$1 \rightarrow$ Upstream normal
$2 \rightarrow$ Upstream culvert
$3 \rightarrow$ Culvert entrance (control)
$4 \rightarrow$ Culvert exit
$5 \rightarrow$ Culvert apron
$6 \rightarrow$ Jump upstream
$7 \rightarrow$ Jump downstream (normal depth)

Ex. \#16 (Cont.): Hydraulic Profile of Channel Transition

Ex. \#16 (Cont.): Energy Loss through Jump

$$
\mathrm{E}_{2}+\mathrm{z}_{2}=\mathrm{E}_{1}+\mathrm{z}_{1}+\mathrm{h}_{\mathrm{L}(2 \rightarrow 1)}
$$

$$
h_{L}=E_{u}-E_{d}+z_{u}-z_{d}=E_{u}-E_{d}+S_{o} \Delta x
$$

$$
h_{L}=3.724-3.62+0.005 \times 8=0.144 \mathrm{ft}
$$

Very weak hydraulic jump

Ex. \#16 (Cont.): Discussion

- Tired yet??
- Advantages of hand/spreadsheet calculation include control of each step in calculations
- Disadvantages include 1) tedious, and 2) requires some level of expert knowledge
- Alternatives? Computer application using HEC-RAS (River Analysis System)

Topic 12: Solve Energy (and Momentum) Equations Using HEC-RAS

$$
E_{2}+z_{2}=E_{1}+z_{1}+h_{L(2 \rightarrow 1)}
$$

$E=$ Specific Energy $=y+v^{2} / 2 g$

Head Loss:

- Major Losses - friction losses along channel
- Minor Losses - channel expansion and contraction

Computation Problem

For subcritical flow, compute from downstream to upstream.
Discharge may vary from station to station, but are assumed known.
The depth, area, etc. at station 1 (downstream) are known.
Energy Equation:

$$
\left(\alpha \frac{Q^{2}}{2 g A^{2}}+W S\right)_{2}=\left(\alpha \frac{Q^{2}}{2 g A^{2}}+W S\right)_{1}+\left(\frac{Q_{2}+Q_{1}}{K_{2}+K_{1}}\right)^{2} L
$$

WS = Water Surface $=y+z$
$+C\left|\left(\frac{\alpha Q^{2}}{2 g A^{2}}\right)_{2}-\left(\frac{\alpha Q^{2}}{2 g A^{2}}\right)_{1}\right|$
Unknowns at Station 2: $W S, A, K,\left(R_{h}\right)$
This is what HEC-RAS does.

3.60

Compound Channel Section

For one-dimensional flow modeling, the slope of the EGL is uniform across the channel section

Thus

$$
Q=\left(\sum_{i} K_{i}\right) S^{1 / 2} \longleftrightarrow \bar{v}=\frac{Q}{A}=\frac{\left(\sum_{i} K_{i}\right) S^{1 / 2}}{A}
$$

Example \# 17: Same problem (Ex. \#16) using HEC-RAS

- Create a Project
- Enter "Reach" on Geometric Data
- Enter X-Section information for stations
- Enter Discharge and Boundary Conditions
- Compute

Ex. \#17 (Cont.): Compute for channel with culvert section

Headwater = 6.51 ft

Tailwater = 3.13 ft

Conclusion: Headwater correctly calculated but tailwater uniform at normal depth \rightarrow need more X-sections

Ex. \#17 (Cont.): Add X-sections and Compute

Need to change computation method to "mixed flow"

Ex. \#17 (Cont.): Results - 1

Ex. \#17 (Cont.): Discussion

- Hand/Spreadsheet calculation and HECRAS calculation give equivalent results
- Both are a "pain" ($1^{\text {st }}$ for computation and $2^{\text {nd }}$ for set-up)
- Life as a Hydraulic Engineer is a "pain"
- HEC-RAS CAN SIMULATE FLOWS IN COMPLEX CHANNELS THAT CONNOT BE ADDRESSED THROUGH SIMPLE ALTERNATIVES

Topic 13: Design of Stable Channels

- A stable channel is an unlined channel that will carry water with banks and bed that are not scoured objectionably, and within which objectionable deposition of sediment will not occur (Lane, 1955).
- Objective: Design stable channels with earth, grass and riprap channel lining under design flow conditions

3.70

(Two) Methods of Approach

- Maximum Permissible Velocity - maximum mean velocity of a channel that will not cause erosion of the channel boundary.
- Critical Shear Stress - critical value of the bed and side channel shear stress at which sediment will initiate movement. This is the condition of incipient motion. Following the work of Lane (1955), this latter method is recommended for design of erodible channels, though both methods are still used.

Bed Shear Stress

Force balance in downstream direction:

$$
p_{1} w y-p_{2} w y+\rho_{w} g w y L \sin (\alpha)-\tau w L=0
$$

$$
\tau=\rho_{\mathrm{w}} \mathrm{~g} \text { y } \sin (\alpha)=\gamma_{\mathrm{w}} \mathrm{y} \mathrm{~S}_{0}
$$

3.72

Bed Shear Stress - Balance Between Gravity and Bed Shear Forces

Calculation of Local Bed Shear Stress

Uniform Flow: $\tau_{0}=\gamma \mathrm{R}_{\mathrm{h}} \mathrm{S}$
Local Bed Shear Stress: γ y S_{f}
Manning Equation: $\mathrm{S}_{\mathrm{f}}=\mathrm{V}^{2} \mathrm{n}^{2} /\left(\phi^{2} \mathrm{y}^{4 / 3}\right)$

Result: $\quad \tau_{0}=\gamma \mathrm{V}^{2} \mathrm{n}^{2} /\left(\phi^{2} \mathrm{y}^{1 / 3}\right)$

Distribution of Tractive Force

- Varies with side slope, channel width, and location around the channel perimeter
- Following criteria for trapezoidal channels (Lane, 1955)

Channel bottom - $\quad\left(\tau_{0}\right)_{\max }=\gamma_{\mathrm{w}}$ y S_{0}
Channel sides - $\quad\left(\tau_{0}\right)_{\max }=0.75 \gamma_{\mathrm{w}} \mathrm{y} \mathrm{S}$ o
(See Figure 8.6, page 303)

Maximum Permissible Velocity Unlined (Earth-lined) Channel

WB Table 9.1 (Fortier and Scobey, 1926)

Material	n	Clear Water		Water transporting colloidal silts	
		v (ft/s)	$\tau_{0}\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$	v (ft/s)	$\tau_{0}\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$
Fine sand, colloidal	0.020	1.50	0.027	2.50	0.075
Sandy loam, noncolloidal	0.020	1.75	0.037	2.50	0.075
Silt loam, noncolloidal	0.020	2.00	0.048	3.00	0.110
Alluvial silts, noncolloidal	0.020	2.00	0.048	3.50	0.150
Ordinary firm loam	0.020	2.50	0.075	3.50	0.150
Volcanic ash	0.020	2.50	0.075	3.50	0.150
Stiff clay, very colloidal	0.025	3.75	0.260	5.00	0.460
Alluvial silts, colloidal	0.025	3.75	0.260	5.00	0.460
Shales and hardpans	0.025	6.00	0.670	6.00	0.670
Fine gravel	0.020	2.50	0.075	5.00	0.320
Graded loam to cobbles when noncolloidal	0.030	3.75	0.380	5.00	0.660
Graded silts to cobbles when colloidal	0.030	4.00	0.430	5.50	0.800
Coarse gravel, noncolloidal	0.025	4.00	0.300	6.00	0.670
Cobbles and shingles	0.035	5.00	0.910	5.50	1.100

For well-seasoned channels of small slopes and for depths of flow less than 3 ft . Tractive force calculated from $\tau_{0}=30 \mathrm{n}^{2} \mathrm{~V}^{2}$.

4.76

Example \#18: Unlined Channel

An earthen channel is to be excavated in a soil that consists of colloidal graded silts to cobbles. The channel is trapezoidal with side slope 2:1 and bottom slope 0.0016 . If the design discharge is 400 cfs , determine the size for an unlined channel using the maximum permissible velocity.

From the table we have $\mathrm{V}=4 \mathrm{ft} / \mathrm{s}$ and $\mathrm{n}=0.030$.
Required channel cross-section area: $\mathrm{A}=\mathrm{Q} / \mathrm{V}=100 \mathrm{ft}^{2}$
Manning equation to find hydraulic radius:

$$
R_{h}=\left(\frac{V n}{\phi S_{0}^{1 / 2}}\right)^{3 / 2}=\left(\frac{4 \times 0.030}{1.486 \sqrt{0.0016}}\right)^{3 / 2}=2.87 \mathrm{ft}
$$

Wetted perimeter: $P=\mathrm{A} / \mathrm{R}_{\mathrm{h}}=100 / 2.87=34.8 \mathrm{ft}$

Example \#18 (Cont.)

Trapezoidal Channel:

$$
A=(b+z y) y \quad P=b+2 y \sqrt{1+z^{2}}
$$

Combine into the quadratic equation (eliminating b)

$$
\left(2 \sqrt{1+z^{2}}-z\right) y^{2}-P y+A=0
$$

Solution:

$$
y=\frac{P \pm \sqrt{P^{2}-4 A\left(2 \sqrt{1+z^{2}}-z\right)}}{2\left(2 \sqrt{1+z^{2}}-z\right)}
$$

Example \#18 (Cont.)

For this problem

$$
y=\frac{34.8 \pm \sqrt{34.8^{2}-4 \times 100 \times\left(2 \sqrt{1+2^{2}}-2\right)}}{2\left(2 \sqrt{1+2^{2}}-2\right)}=10.0 \mathrm{or} 4.0 \mathrm{ft}
$$

Channel base width (use $\mathrm{y}=4 \mathrm{ft}$ since $\mathrm{y}=10 \mathrm{ft}$ gives negative b)

$$
b=P-2 y \sqrt{1+z^{2}}=17.0 \mathrm{ft}
$$

Bed shear stress

$$
\tau_{o}=\gamma y_{\max } S_{f}=62.4 \times 4.0 \times 0.0016=0.40 \mathrm{lb} / \mathrm{ft}^{2}
$$

Note: small velocity values are required for stable unlined channels

Grassed Channels

WB, Figure 9.3, page 332

Grassed Channels

Permissible Velocities for Channels Lined with Grass (SCS, 1941)

Cover	Slope range, \%	Permissible velocity, ft/s	
		Erosion-resistant soils	Easily eroded soils
Bermuda grass	$\begin{gathered} 0-5 \\ 5-10 \\ >10 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 8 \\ & 7 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \\ & 4 \\ & \hline \end{aligned}$
Buffalo grass, Kentucky bluegrass, smooth brome, blue grama	$\begin{gathered} \hline 0-5 \\ 5-10 \\ >10 \\ \hline \end{gathered}$	$\begin{aligned} & 7 \\ & 6 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \\ & 3 \end{aligned}$
Grass mixture	$\begin{gathered} 0-5 \\ 5-10 \end{gathered}$ Do not use	$\begin{aligned} & 5 \\ & 4 \end{aligned}$ opes steeper tha	4 3 10%
Lespedeza sericea, weeping love grass, ischaemum (yellow bluestem), kudzu, alfalfa, crabgrass	$0-5$ Do not use except for s	3.5 opes steeper tha opes in a combin	2.5 5%, tion channel
Annuals - used on mild slopes or as tempory protection until permanent covers established, common lespedeza, Sudan grass	$0-5$ Use on slop recommend	3.5 eeper than 5% is	2.5

WB, Table 9.3 (from Chow, 1959)

Movement of Sediment - Incipient Motion

$$
\begin{aligned}
F= & \mathrm{k} W=W \tan (\phi) \\
& \ell \text { Coefficient of Friction }
\end{aligned}
$$

Force F necessary to move object

$$
\phi=\text { Angle of Repose }
$$

Sliding Downhill - F = 0

$$
\frac{\text { Tangent }}{\text { Normal }}=\frac{W \sin (\phi)}{W \cos (\phi)}=\tan (\phi)=k
$$

Application to Incipient Motion

Shield's Number, Sh

$$
\frac{F_{c}}{W} \cong \frac{\tau_{c} d^{2}}{\left(\gamma_{s}-\gamma\right) d^{3}}=\frac{\tau_{c}}{\left(\gamma_{s}-\gamma\right) d} \equiv S h
$$

The Shield's number is analogous to the angle of internal friction

Shield's Curve - Sh(Re*)

Sh depends on
τ_{0}, d, ρ, μ

Shear Reynolds
number:

$$
\begin{aligned}
& \operatorname{Re}^{*}=\frac{u^{*} d}{v} \\
& u^{*}=\sqrt{\tau_{0} / \rho}
\end{aligned}
$$

Shield's Number, Sh

The Shield's parameter Sh

$$
S h=\frac{\tau_{o}}{\left(\gamma_{s}-\gamma\right) d}=\frac{\gamma R_{h} S_{o}}{\left(\gamma_{s}-\gamma\right) d}=\frac{R_{h} S_{o}}{(S G-1) d}
$$

As long as $\mathrm{Sh}<\mathrm{Sh}_{\text {critical }}$ (found from Shield's Curve), there will be no motion of bed material

Mobility of bed material depends on particle diameter and weight (specific gravity), and on channel flow depth (hydraulic radius) and slope

Design of Riprap Lining

For Re* $>$ 10, the critical Shield's number satisfies

$$
0.03 \leq \frac{\tau_{c}}{\left(\gamma_{s}-\gamma\right) d} \leq 0.06
$$

For problems in Stormwater Management, Re* is very large (1000's) and $\mathrm{Sh}_{\text {critical }}=0.06$. For design purposes, a value $\mathrm{Sh}_{\mathrm{c}}=0.05$ or 0.04 is often selected.

Increased bed material size (riprap) results in decreased Sh (improved bed stability) but increases bed roughness (Manning's n)

Design of Riprap Lining

An approach to design of stable channels using riprap lining:

1. For specified discharge, channel slope and geometry, select a test median particle diameter d_{50} (the designation d_{50} means that 50 percent of the bed material has a smaller diameter)
2. Use Strickler's equation to relate material size to Manning's n : $n=0.034 d_{50}{ }^{1 / 6}$
3. Use Manning's equation to find the depth and R_{h}
4. Check bed stability using Shield's curve

Example \#19: Riprap Lining

What size riprap is required for a channel carrying a discharge $\mathrm{Q}=2,500 \mathrm{ft}^{3} / \mathrm{s}$ on a slope $\mathrm{S}_{0}=0.008$. The channel has trapezoidal cross section with bottom width $\mathrm{b}=25 \mathrm{ft}$ and side slope $\mathrm{z}: 1=3: 1$?

Solution:

1. Select $\mathrm{d}_{50}=3$ inches (0.25 ft).
2. $\mathrm{n}=0.034(0.25)^{1 / 6}=0.0270$
3. For the discharge and slope, Manning's equation gives $y=5.24 \mathrm{ft}$; $R_{h}=3.67 \mathrm{ft}$.
4. These values give $\mathrm{Sh}=3.67 \times 0.008 /(1.65 \times 0.25)=0.071 ; \mathrm{Re}^{*}=$ $\left(g R_{h} S_{0}\right)^{1 / 2} d_{50} / v=(32.2 \times 3.67 \times 0.008)^{1 / 2} \times 0.25 / 10^{-5}=24,000$. From the Shield's curve, $\mathrm{Sh}>\mathrm{Sh}_{\mathrm{c}}$, and the bed will erode.

Design of Channel Lining

Permissible Shear Stress for Lining
Materials (US DOT, 1967)

For Riprap Lining:
Recommended
Grading - allows
voids between
larger rocks to be
filled with smaller
rocks (Simons and
Senturk, 1992)
$d_{20}=0.5 d_{50}$
$d_{100}=2 d_{50}$

Lining Category	Lining Type	Permissible Shear Stress $\left(\mathrm{lb} / \mathrm{tt}^{2}\right)$
Vegetative	Class A	3.70
(Grass, with	Class B	2.10
degree of	Class C	1.00
retardance)	Class D	0.60
Gravel Riprap	Class E	0.35
	1 inch	0.33
Rock Riprap	2 inch	0.66
	6 inch	2.00
	12 inch	4.00

[^0]: Possible depths for $\mathrm{y}_{\mathrm{a}}=1.389 \mathrm{ft}$ or 5.74 ft

