Course Number: CE 365K Course Title: Hydraulic Engineering Design Course Instructor: R.J. Charbeneau

- Subject: <u>Open Channel Hydraulics</u>
- Topics Covered:

- 8. Open Channel Flow and Manning Equation
- 9. Energy, Specific Energy, and Gradually Varied Flow
- 10. Momentum (Hydraulic Jump)
- 11. Computation: Direct Step Method and Channel Transitions
- 12. Application of HEC-RAS
- 13. Design of Stable Channels

3.10					
Roughness and	' Manning	's n			
Equivalence between rough	nness size (k) ai	nd Manning's n:			
$n = 0.034 \text{ k}^{1/6}$ (k in ft)					
		Strickler (1923)			
<u>Examples</u>	n	k (cm)			
Concrete (finished)	0.012	0.06			
Asphalt	0.016	0.3			
Earth channel (gravel)	0.025	5			
Natural channel (clean)	0.030	15			
Floodplain (light brush)	0.050	300			
* Compare with Manning's n for sheet flow					

3.14	Trapezoida	l Chan	nel Normal ar	nd Critical Dep	th	
	L = feet of	r meter	s, depending on ti	he value of g (3	2.2 ft/s² or 9.8	1 m/s²
	g (L/sec ²)=	32.2				
Example #13 (Cont.)						
	Normal Depth			Critical Depth		
$VR_h > 10 ft2/s \rightarrow n$	Bottom Width		Enter These		Discharge	
= 0.03 (slide 3.11)	b (L) = Side Slope	5		$y(L) = Q(L^{3}/s) =$	3.700	
	z : 1 =	2		Froude Nu		
	Manning's n			$Fr^2 =$	1.59	
	n = Bottom Slope	0.03				
0	$S_0 =$	0.008				
Q _{max} =						
400 cfs	Depth y (L) =	4.000	Select This			
	y (L) =	4.000				
	Discharge		Calculate This			
	$Q(L^{3}/s) =$	398.1				
	Hydraulic Rad	ius		Velocity		
	$R_h(L) =$	2.27		V (L/s) =	7.66	
	Area			Velocity He	ad	
	$A(L^{2}) =$	52.00		V ² /2g (L) =	0.910	
	Conveyance			Specific En		
	K =	4451		E (L) =	4.910	

Critical Depth – Froude number

3.17

Critical flow occurs when the velocity of water is the same as the speed at which disturbances of the free surface will move through shallow water. The speed or *celerity* of disturbances in shallow water is given by $c = (g D_h)^{1/2}$, where D_h is the hydraulic depth. Critical flow occurs when v = c, or more generally

$$Fr \equiv \frac{V}{\sqrt{g D_h}} \rightarrow Fr_c^2 = \frac{(Q/A)^2}{g(A/T)} = \frac{Q^2 T}{g A^3} = 1 \rightarrow y_c$$

Importantly, <u>critical depth is independent of the</u> <u>channel slope</u>.

Specific Energy at Critical Flow Rectangular channel: $D_h = y$ $E = V^2/2g + y = [(1/2) (V^2/gy) + 1] y$ = (1/2 + 1) yFroude Number For critical flow (in a rectangular channel): y = (2/3) E $V^2/2g = (1/3) E$

Bed-friction head loss: $h_f = (Q/K)^2 L$

3.49

How do you determine which depth at the end of the culvert apron is correct?

The flow profile downstream of the apron must follow an M-curve (since $y_c < y_n$ in the downstream channel) and the depth must end in normal depth.

Ex. #16 (Cont.): M3 Profile to Hydraulic Jump

- How far does the flow profile follow the M3 curve downstream of the concrete apron?
- From this supercritical flow profile, the flow must reach subcritical flow at normal depth through a hydraulic jump.
- The flow profile must follow the M3 curve until the depth is appropriate for the jump to reach y_n (this is the sequent depth to y_n).

Ex. #16 (Cont.): Distance along M3 Curve and Jump Length

The Direct Step method may be used to estimate the distance along the M3-curve from the culvert apron to the entrance of the hydraulic jump.

3.53

Taking a single step, this distance is estimated to be 44 feet.

The jump length is calculated as

 $L_i = 6.9 (3.13 - 1.97) = 8 \text{ ft}$

3.56
Ex. #16 (Cont.): Energy Loss through
Jump

$$E_2 + Z_2 = E_1 + Z_1 + h_{L(2 \rightarrow 1)}$$

 $h_L = E_u - E_d + Z_u - Z_d = E_u - E_d + S_o \Delta x$
 $h_L = 3.724 - 3.62 + 0.005 \times 8 = 0.144$ ft
Very weak hydraulic jump

Ex. #16 (Cont.): Discussion

• Tired yet??

- Advantages of hand/spreadsheet calculation include control of each step in calculations
- Disadvantages include 1) tedious, and 2) requires some level of expert knowledge
- Alternatives? Computer application using HEC-RAS (River Analysis System)

3.61

Example # 17: Same problem (Ex. #16) using HEC-RAS

- Create a Project
- Enter "Reach" on Geometric Data
- Enter X-Section information for stations
- Enter Discharge and Boundary Conditions
- Compute

Calculation of Local Bed Shear Stress

Uniform Flow: $\tau_o = \gamma R_h S$ Local Bed Shear Stress: $\gamma y S_f$ Manning Equation: $S_f = V^2 n^2/(\phi^2 y^{4/3})$

Result: $\tau_o = \gamma V^2 n^2/(\phi^2 y^{1/3})$

Maximum Permissible Velocity – Unlined (Earth-lined) Channel

WB Table 9.1 (Fortier and Scobey, 1926)					
				ter transporting	
Material				colloidal silts	
		v (ft/s)	τ_{o} (lb/ft ²)	v (ft/s)	τ_{o} (lb/ft ²)
Fine sand, colloidal	0.020	1.50	0.027	2.50	0.075
Sandy loam, noncolloidal	0.020	1.75	0.037	2.50	0.075
Silt loam, noncolloidal	0.020	2.00	0.048	3.00	0.110
Alluvial silts, noncolloidal	0.020	2.00	0.048	3.50	0.150
Ordinary firm loam	0.020	2.50	0.075	3.50	0.150
Volcanic ash	0.020	2.50	0.075	3.50	0.150
Stiff clay, very colloidal	0.025	3.75	0.260	5.00	0.460
Alluvial silts, colloidal	0.025	3.75	0.260	5.00	0.460
Shales and hardpans	0.025	6.00	0.670	6.00	0.670
Fine gravel	0.020	2.50	0.075	5.00	0.320
Graded loam to cobbles when noncolloidal	0.030	3.75	0.380	5.00	0.660
Graded silts to cobbles when colloidal	0.030	4.00	0.430	5.50	0.800
Coarse gravel, noncolloidal	0.025	4.00	0.300	6.00	0.670
Cobbles and shingles	0.035	5.00	0.910	5.50	1.100
For well-seasoned channels of small slopes and for depths of flow					
less than 3 ft. Tractive force calculated from $\tau_0 = 30 \text{ n}^2 \text{ V}^2$.					

Permissible Velocities for Channel		· · · · · · · · · · · · · · · · · · ·			
	Slope	Permissible velocity, ft/s			
Cover	range,	Erosion-resistant	Easily eroded		
	%	soils	soils		
Bermuda grass	0 - 5	8	6		
	5 - 10	7	5		
	> 10	6	4		
Buffalo grass, Kentucky bluegrass,	0 - 5	7	5		
smooth brome, blue grama	5 - 10	6	4		
	> 10	5	3		
Grass mixture	0 - 5	5	4		
	5 - 10	4	3		
	Do not use on slopes steeper than 10%				
Lespedeza sericea, weeping	0 - 5	3.5	2.5		
love grass, ischaemum (yellow	Do not use on sl	opes steeper that	n 5%,		
bluestem), kudzu, alfalfa, crabgrass	except for side slopes in a combination channel				
Annuals - used on mild slopes or	0 - 5	3.5	2.5		
as tempory protection until permanent	Use on slopes steeper than 5% is not				
covers established, common	recommended				
lespedeza, Sudan grass					

3.85

Design of Riprap Lining

For Re* > 10, the *critical* Shield's number satisfies

$$0.03 \le \frac{\tau_c}{\left(\gamma_s - \gamma\right)d} \le 0.06$$

For problems in Stormwater Management, Re* is very large (1000's) and $Sh_{critical} = 0.06$. For design purposes, a value $Sh_c = 0.05$ or 0.04 is often selected.

Increased bed material size (riprap) results in decreased Sh (improved bed stability) but increases bed roughness (Manning's n)

Example #19: Riprap Lining

What size riprap is required for a channel carrying a discharge Q = 2,500 ft³/s on a slope $S_o = 0.008$. The channel has trapezoidal cross section with bottom width b = 25 ft and side slope z:1 = 3:1?

Solution:

- 1. Select $d_{50} = 3$ inches (0.25 ft).
- 2. $n = 0.034 \ (0.25)^{1/6} = 0.0270$
- 3. For the discharge and slope, Manning's equation gives y = 5.24 ft; R_{h} = 3.67 ft.
- 4. These values give Sh = $3.67 \times 0.008/(1.65 \times 0.25) = 0.071$; Re^{*} = $(g R_h S_o)^{1/2} d_{50}/\nu = (32.2 \times 3.67 \times 0.008)^{1/2} \times 0.25/10^{-5} = 24,000$. From the Shield's curve, Sh > Sh_c, and the bed will erode.

^{3.88} <i>Ex. #19 (Cont.):</i>	Normal De	nth			Critical D	enth
Riprap Lining	Bottom Width b (ft) = Side Slope				Depth and y (ft) = Q (cfs) =	
2.1 Try $d_{50} = 6$ inches (0.5 ft)	z : 1 = Manning's n n = Friction Slope	3 . 0.0283		Enter These	Froude Nu Fr ² =	
2.2 n = $0.034 (0.5)^{1/6} = 0.0303$ 2.2 From Manning's equation	S _f =	0.008				
2.3 From Manning's equation, y = 5.56 ft; Rh = 3.85 ft	Depth y (ft) =	5.37	-	Select This		
2.4 Sh = 0.037, Re* = 50,000 → OK	Discharge Q (cfs) =	2500	-	Calculate This		
	Hydraulic Rad R _h (ft) =	lius 3.74			Velocity V (ft/s) =	11.32
3.1 Try $d_{50} = 4$ inches	Area A (ft²) =	220.76			Velocity He V ² /2g =	ad 1.991
Channel Hydraulics.xls	Conveyance K =	27950			Specific Er E =	ergy 7.361
Check values here	$\tau_{o} (lb/ft^{2}) = \tau^{*} = Sh = Be^{*} = $	1.869 0.0545 32736	E	nter_d ₅₀	d ₅₀ (inch) 4 Strickler's	n 0.0283
	Re+ = Shield's Cu				SUICKIEFS	Equation

" Design of C	Channel Lin	ing				
Permissible Shear Stress for Lining Materials (US DOT, 1967)						
For Riprap Lining:	Lining	Lining	Permissible			
Recommended	Category	Туре	Shear Stress			
Grading – allows			(lb/ft ²)			
voids between	Vegetative	Class A	3.70			
larger rocks to be	(Grass, with	Class B	2.10			
filled with smaller	degree of	Class C	1.00			
rocks (Simons and	retardance)	Class D	0.60			
Senturk, 1992)		Class E	0.35			
$d_{20} = 0.5 d_{50}$	Gravel Riprap	1 inch	0.33			
$d_{100} = 2 d_{50}$		2 inch	0.66			
$u_{100} - 2 u_{50}$	Rock Riprap	6 inch	2.00			
		12 inch	4.00			