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ABSTRACT 1 

Against the backdrop of increasing shared autonomous vehicle (SAV) penetration in the ride-2 

sharing and sourcing markets, this research seeks to address the knowledge gap regarding the 3 

impact of users’ behavior to pay for various SAV services (provided within the framework of a 4 

single shared autonomous fleet operator) on the transportation network. These service choices 5 

range from luxury cars and large vehicles to smaller, more economical options, as well as the 6 

potential for carpooling with other passengers. A nested service choice model was employed and 7 

simulations with different fleet sizes were conducted in the Bloomington region, Illinois, Chicago 8 

using the POLARIS software. The comparative analysis of scenarios with and without service 9 

options reveals that scenarios with a service choice model resulted in increased daily vehicle miles 10 

traveled (VMT) per SAV by 18.4%, empty VMT by 55%, and simultaneously generate 54% more 11 

profit. The implementation of dynamic ride-sharing (DRS) led to a significant rise in the average 12 

daily profit, increasing from $170 per SAV (without DRS) to $206 per SAV. Results show a clear 13 

preference for standard economy services during peak commute hours (8:00 to 9:00 a.m., and 5:00 14 

to 6:00 p.m.) as individuals prioritized time over the quality of service for work trips, whereas 15 

demand for luxury services displays minimal fluctuations over the day.  16 

Keywords: Shared autonomous vehicles, demand management, transportation network companies 17 

(TNC), Agent-based modeling 18 

 19 

BACKGROUND  20 

The rising tide of on-demand ride-sourcing to connect riders and drivers via smartphone 21 

applications and sophisticated routing algorithms has had a ripple effect on urban transport 22 

systems. As of now, Uber (1) is operating in 900 cities, and Lyft (2) has 29% of the US market 23 

share. The inclusion of autonomous vehicles (AVs) in today's transportation network companies 24 

(TNCs) by amalgamating car-sharing (e.g., Zipcar, car2go) and ride-sharing (Uber, Lyft) into a 25 

unified service of shared autonomous vehicles (SAVs) (3) could provide a more cost-effective 26 

transportation option by means of subsidies and potentially supplant a substantial portion of 27 

privately and publicly owned-conventional vehicles (4). Waymo and Cruise have already initiated 28 

a self-driving taxi service utilizing autonomous technology in different US cities (5; 6), and several 29 

other companies, including Baidu, Aurora, and Zoox are also operating in this field. Uber has 30 

recently announced a strategic collaboration with Waymo, aiming to incorporate autonomous 31 

driving technology into Uber's extensive ride-sharing and delivery networks (7). Existing TNCs 32 

like Uber and Lyft provide customers with choices between standard-sized economy vehicles 33 

(Like UberX and Lyftline) and premium vehicles (like LyftLux and Uber Black), as well as extra-34 

seating (XL) options. In contrast, Cruise has faced challenges in developing and producing 35 

autonomous vehicles (AVs), resulting in their reliance on standard makes such as Chevy Bolt 36 

electric vehicles (8). The intricate nature of AV design and manufacturing has contributed to the 37 

limitations of using standard-sized autonomous vehicles. Consequently, companies that possess 38 

SAV fleets face limitations in their ability to provide a diverse array of services to their customers. 39 

Currently, Cruise possesses a six-passenger, all-electric vehicle named "Origin" that is prepared 40 

for production, and is now awaiting approval from the United States National Highway Traffic 41 

Safety Administration (NHTSA) to proceed (9). Waymo’s (10) fleet offers the world’s first 42 

premium electric autonomous service with the Jaguar I-PACE vehicle type.  Hence, it is merely a 43 
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question of time until these SAV fleet operators undergo further expansion, thereby presenting 1 

their users with a range of choices encompassing standard SAVs (existing service), luxury SAVs, 2 

and large vehicle SAVs, all accessible through a single smartphone app.  3 

Although there exists a substantial body of literature focusing on standard-sized AV simulations 4 

aiming to analyze the impacts of ride-sharing, the provision of PUDOs, and optimized SAV 5 

repositioning (11; 12; 13; 14; 15; 16), there is a little of research specifically examining the impacts 6 

of various SAV service options, such as the choice between economy and premium offerings or 7 

the provision of standard (4-seater) versus large/ XL (5+ seater) vehicles on the traffic network. 8 

This limitation in research is primarily attributed to the scarcity of data, which is a consequence of 9 

the fact that these scenarios are still anticipated to occur in the future. Therefore, in order to analyze 10 

individuals' behavior towards the services provided, this study relies on the existing literature on 11 

service choice modeling in the context of human-driven ride-hailing services. There exists some 12 

literature that compares services offered by Uber over conventional taxis such as Paronda et al. 13 

(17) who analyzed the operations of Uber and GrabCar in the Philippines and observed that Uber 14 

provided a service with enhanced speed, affordability, and superior quality when compared to 15 

traditional taxi services. Nevertheless, the research failed to consider distinct Uber services such 16 

as UberX, UberXL, or premium alternatives. Schwieterman (18) conducted a study that 17 

investigated the influence of service attributes, specifically Lyft Line, UberPool, Lyft, and UberX, 18 

on user preferences when choosing between transportation network companies (TNCs) and public 19 

transit. Several studies have been conducted to examine the sociodemographic characteristics of 20 

users of TNCs (19; 20; 21). Yet, the prior research failed to examine the effects of users' service 21 

preferences on the wider transportation system. 22 

There exist a multitude of extensive datasets that shed light on the level of demand for rideshare 23 

services offered by companies such as Uber and Lyft. A prominent dataset, which can be accessed 24 

through the official website of the New York City Government, provides comprehensive records 25 

of yellow and green taxi trips (22). The dataset encompasses detailed information regarding the 26 

timing and locations of pick-up and drop-off, distances traveled during the trip, breakdown of fares 27 

as per service type, the range of payment methods available, and passenger numbers as reported 28 

by the drivers. In addition, the Massachusetts Government's official website provides access to 29 

valuable rideshare data pertaining to the Boston region (23). Since 2017, the Department of Public 30 

Utilities (DPU) has consistently released annual reports containing data on rideshare services. In 31 

2021, TNCs, also known as rideshare enterprises, were responsible for approximately 39.7 million 32 

rides in Massachusetts. Furthermore, the City of Chicago provides access to a dataset specifically 33 

centered on the Chicago area via its official data portal (24).  Several studies have employed the 34 

previously mentioned datasets to analyze dynamic ride-sharing behavior and competitive 35 

dynamics among TNC companies and to predict their pick-up and drop-off locations (25; 26; 27; 36 

28). 37 

Despite the existence of diverse services, such as UberPool, UberXL, LyftLux, and LyftPlus, 38 

offered by TNCs like Uber and Lyft, there is a shortfall of academic research pertaining to the 39 

public's perception of these services with respect to fare rates and waiting durations. Furthermore, 40 

little in the way of research exists regarding the effects of these services on the transportation 41 

network (such as VMT and average trip-length changes within the network), the operations of 42 

Transportation TNC fleets, and the wider transportation network. This study aims to conduct a 43 

pioneering analysis that simulates the effects of users' SAV service choices aiming to lead SAV-44 
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owned companies to develop strategies for determining optimal fares and SAV fleet sizes while 1 

maintaining acceptable levels of empty vehicle miles traveled (empty VMT) and operational costs. 2 

The remainder of the paper is arranged as follows: we commence with an explanation of 3 

simulations in POLARIS, followed by a comprehensive description of the dataset and case study 4 

region chosen for the analysis. Subsequently, we present a detailed account of the service choice 5 

implemented along with different scenarios that were simulated. The penultimate section discusses 6 

the results derived from these scenarios, and the paper concludes with a summary of the findings 7 

and implications thereof. 8 

MODELLING IN POLARIS 9 

This study leverages the Polaris software, developed by Argonne National Laboratory, that 10 

facilitates the micro-simulation of SAV operations with and without DRS (29; 30). The travel 11 

demand simulator is capable of performing comprehensive simulations, thanks to its integration 12 

of a population synthesizer that can iteratively adjust the agent population averages across various 13 

categories in order to align them with the regional cross-tables. The synthetic population is 14 

subjected to a series of activity models that enable the generation, scheduling, and allocation of 15 

hours for each individual. The synthesizer enables the efficient scaling of simulated individual 16 

agents, while POLARIS is a resilient C++ framework capable of simulating nearly all regional 17 

populations with great efficiency. Utilizing dynamic traffic assignment (31), network traffic is 18 

balanced to achieve a dynamic user equilibrium. 19 

DATA SETS USED AND CASE STUDY REGION 20 

The region under consideration for this study is Bloomington, located in the state of Illinois, United 21 

States of America. The network consists of 185 zones, 2500 nodes, and 7000 links. It is a compact 22 

geographical area spanning nearly 74 square miles and serving as the residence for an estimated 23 

population of around 120,000 individuals. For SAV simulations, it is proposed that economy fares 24 

commence at a base fare of $2, accompanied by supplementary charges of 90 cents per mile 25 

traveled and 25 cents per minute. The projected operational costs for a typical SAV were 26 

hypothesized to amount to $10 per day per SAV, along with an additional charge of 30 cents per 27 

mile. In contrast, XL vehicles were anticipated to incur a cost of $25 per day per SAV, in addition 28 

to an extra fee of 40 cents per mile. Luxury vehicles are priced 50 percent more than the number 29 

of economy service vehicles, whereas the ride-sharing provisions were specifically devised to 30 

decrease the total fare by 40% to promote pooling (32). This study employs high volume for-hire 31 

vehicle (FHV) trip data from New York City to develop a model for individual service choice. The 32 

dataset consists of 693,072 rides provided by Uber, Lyft, and traditional taxi services (22). The 33 

extensive dataset encompasses detailed information regarding the type of service selected (such as 34 

Lyft Line, Lyft Premier, Lyft Lux SUV, UberXL, UberX, UberPool, etc.), the amount paid for the 35 

service, the starting and ending locations, the distance traveled, and the prevailing weather 36 

conditions during each individual trip.  37 

SERVICE CHOICE MODEL 38 

The nested model choice model implemented in Polaris (30) posits that individuals who opt for 39 

TNCs instead of alternative modes will exclusively use SAVs. This study expands upon the 40 

existing mode choice model by incorporating a service choice model that assumes a complete 41 
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monopoly in the market, where all the SAV services are provided by a single operator. The 1 

operator is responsible for the centralized assignment and monitoring of requests and may 2 

reposition resources as necessary in response to changes in the demand-supply ratio. The SAV 3 

operator carries out repositioning tasks, while also maintaining a record of present and potential 4 

execution requests. The model addresses the needs of travelers who opt for ride-sharing using the 5 

DRS algorithm, which incorporates a heuristic approach to effectively handle travel delays 6 

encountered at various points during the trip, as discussed in the study done by Gurumurthy and 7 

Kockelman (13). Upon an SAV trip request, the operator assigns it to the nearest vehicle to lower 8 

the total empty VMT and decrease wait times using a zone-based structure. POLARIS sorts pool 9 

of people who selects an SAV as their preferred mode of transportation (after the nested mode 10 

choice model is implemented), and subsequently provides the spectrum of services that are nested 11 

within a single operator platform. When individual prefers a pooled service, a standard economy 12 

vehicle (4-seater) is assigned, drawing inspiration from Uber and Lyft operations for pooled rides. 13 

However, if a passenger prefers not to share their ride with unknown co-passengers, they have the 14 

option to select from either a standard (4-seater) or an XL (6-seater) vehicle, based on their party 15 

size, as shown in Figure 1 Mode choice model with integrated service choice. Following this 16 

selection, the service choice comes into play. Given the choice of vehicle type, the passenger is 17 

then presented with two service options: economy and premium. It is assumed that the passenger's 18 

service choice is primarily influenced by fare and in-vehicle travel time.  19 

 20 
Figure 1 Mode choice model with integrated service choice 21 

RESULTS 22 

The nested logit model explained above was tested in the Bloomington region of Illinois, Chicago. 23 

The service choice parameters are tuned to current travel trends that yielded around 20,579 trip 24 
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requests in a 24-hour simulation period when 25% of the population was synthesized. Three 1 

different fleet sizes of SAVs were tested with and without dynamic ride-sharing. In all cases, the 2 

highest waiting time is established at 15 minutes. This signifies that the maximum duration for an 3 

SAV to arrive for pickup is estimated to be 15 minutes prior to the commencement of the pickup 4 

trip. The travel time may increase if there are changes in traffic conditions. It was posited that the 5 

fare for an SAV varies solely based on service type, implying that a 6-seater vehicle would have 6 

the same pricing as a 4-seater vehicle. Furthermore, in the process of matching the trip request 7 

from the demand side to the supply side by the operator, if a service type requested is not available 8 

within a 15-minute range, then the vehicle is not assigned. In order to conduct a comparative 9 

analysis of three scenarios (with different fleets), the initial step involved simulating traffic to 10 

establish demand within the Bloomington region. Subsequently, the demand was fixed at 25% of 11 

the total to compare SAV operations across various fleet sizes, both with and without the inclusion 12 

of a dynamic ride-sharing option. On the supply side, the distribution of vehicles was such that the 13 

fleet operator allocated 75% of its vehicles for economy requests, while the remaining 25% were 14 

designated for premium services. In relation to the distribution of vehicle types, it can be observed 15 

that 88% of the fleet consists of 4-seaters, while the remaining portion comprises 6-seaters. The 16 

prevalence of standard 4-seater vehicles can be attributed to their high demand, driven by their 17 

comparatively lower cost. Additionally, a significant proportion of trip requests, approximately 18 

60%, involve solo drivers, while nearly 15% of these requests explicitly express a willingness to 19 

share rides. Therefore, there was a higher demand for 4-seater economy vehicles in comparison to 20 

other types of service vehicles. 21 

The scenario results where people were offered dynamic ride sharing (Table 1) indicate that 22 

individuals opting for economy vehicles tend to travel longer distances on average compared to 23 

those choosing premium vehicles. Nonetheless, no discernible disparity in the mean trip distance 24 

covered by an individual is observed between a standard and an XL, as both options have the 25 

same fares when opting for the economy service. It seems likely that the implementation of 26 

dynamic ride-sharing will lead to an increase in both the total distance covered and the number 27 

of unoccupied vehicles operated by SAVs within the network. This can be attributed to the 28 

increased circulation of these vehicles, as they will need to traverse longer distances to 29 

accommodate passengers of diverse origins who have opted for ride pooling.  30 

Table 2 Fleet performance metrics for the Bloomington region with service choices, NO DRS 31 

contains scenario results where the service choice did not offer dynamic ride-sharing. Results 32 

indicate that the average vehicle miles traveled (VMT) by standard vehicles with economy 33 

service increased by an average of 6% across all scenarios as compared to a strategy where ride 34 

pooling was allowed.  35 

As anticipated, there exists an inverse relationship between vehicle utilization and idle time. As 36 

the size of the fleet increases, the average number of trips served per vehicle decreases. In contrast, 37 

the expansion of the SAV fleet resulted in a reduction in the mean duration of users' waiting 38 

periods. In particular, the mean duration of waiting time experienced by individuals does not vary 39 

much with DRS strategy (3.8 min), and without the DRS strategy (3.9 min) in the stimulation. This 40 

is primarily due to the fact that our simulation represents a quarter of the total population, with 41 

approximately 15% of individuals opting for the pooling option. There is a limited amount of data 42 

available to analyze the impact of pooling on waiting times compared to events where pooling is 43 

not offered. The idle time that exceeds 15 hours can also be attributed to the difficulties 44 
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encountered in aligning particular service types with their corresponding requests, as the 1 

positioning of vehicles plays a substantial role in this regard. In the event that a customer expresses 2 

a preference for a premium vehicle as opposed to an economy vehicle, and if the premium vehicle 3 

cannot be provided within a 15-minute waiting period, the trip will not commence.  4 

Table 1 Fleet performance metrics for the Bloomington region with service choices, DRS 5 

  Scenario 1 Scenario 2 Scenario 3 

  Standard XL Standard XL Standard XL 

  Eco Lux Eco Lux Eco Lux Eco Lux Eco Lux Eco Lux 

SAV fleet size 

(100% 

population) 

2200 2000 1800 

Population per 

SAVs 
54 60 66 

SAVs per service 

type (%) 
33 13 39 15 35 14 37 14 35 14 39 12 

Demand (100% 

population) 

37,312 

trips 
9,308 29,080 6,616 37,356 9,580 28,720 6,660 37,620 9,288 28,900 6,504 

Avg wait time 

(min) 
3.9 min 3.9 3.4 3.8 4.1 3.9 3.5 3.7 4.2 3.8 3.7 3.6 

Avg traveled 

distance per 

person (mi) 

4.05 mile 3.36 3.95 3.58 4.07 3.37 3.95 3.55 4.08 3.33 3.90 3.58 

Avg VMT per 

SAV (mi) 

286.6 

mile 
178.6 185.2 117.6 297.3 180.5 215.6 139.0 345.6 194.6 234.2 159.2 

% eVMT 30 37 29 35 31 35 29 35 32 36 31 35 

SAV 

trips/vehicle/day 

51.54 

trips 
33.72 33.50 19.93 52.76 34.71 38.81 24.13 59.53 37.45 41.52 29.04 

Avg party size 
1.61 

occupants 
1.60 1.60 1.58 1.58 1.59 1.59 1.59 1.60 1.57 1.57 1.57 

Idle time per day 
(hour /vehicle) 

15.26 
hours 

18.49 18.37 20.41 14.95 18.45 17.45 19.76 13.45 18.00 16.85 19.10 

AVO (per 

revenue-mile)  

1.67 

occupants 

 per 

revenue-

mile 

1.60 1.61 1.57 1.64 1.60 1.58 1.58 1.65 1.58 1.56 1.56 

  6 
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Table 2 Fleet performance metrics for the Bloomington region with service choices, NO DRS 1 

 2 

 Scenario 1 Scenario 2 Scenario 3 

 Standard XL Standard Standard XL Standard 

 Eco Lux Eco Lux Eco Lux Eco Lux Eco Eco Lux Eco 
SAV fleet 

size (100% 

population) 

2200 2000 1800 

Population 

per SAVs 
54 60 66 

SAVs per 

service type 

(%) 

33 13 39 15 35 14 37 14 35 14 39 12 

Demand 

(100% 

population) 

36,036 

trips 
9,712 29,536 7,032 35,296 9,808 30,400 6,812 35,520 10,008 29,904 6,884 

Avg wait 

time (min) 
3.6 min 3.7 3.6 3.7 3.7 3.9 3.8 3.7 3.9 3.6 3.7 3.6 

Avg 

traveled 

distance per 

person (mi) 

3.8 

mile 
3.4 4.0 3.5 3.8 3.4 3.9 3.6 3.9 3.4 3.9 3.4 

Avg VMT 

per SAV 

(mi) 

276.3 

mile 
185.0 191.9 124.1 306.3 227.1 254.8 154.0 293.3 180.3 221.9 135.6 

% eVMT 31 36 30 33 32 37 31 34 32 35 30 35 

SAV 

trips/vehicl

e/day 

49.8 

trips 
35.2 34.0 21.2 54.5 42.3 44.7 28.4 51.6 34.8 39.3 26.1 

Avg party 

size 

1.58 

occupa

nts 

1.58 1.60 1.57 1.58 1.59 1.59 1.58 1.59 1.55 1.59 1.60 

Idle time 

per day 

(hour/vehicl

e) 

15.6 

hours 
18.3 18.2 20.2 14.7 17.0 16.2 19.3 15.1 18.4 17.3 19.9 

AVO (per 

revenue-

mile)  

1.57 

occupa

nts 

 per 

revenue

-mile 

1.58 1.60 1.56 1.58 1.58 1.58 1.58 1.59 1.55 1.58 1.59 

  3 
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Table 3 Fleet performance metrics for the Bloomington region without service choices 1 

 DRS NO DRS 

 Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 

SAV fleet size (100% population) 2,200 2,000 1,800 2,200 2,000 1,800 

Population per SAVs 54 60 66 54 60 66 

Demand (100% population) 
82,320 

trips 

82,320 82,320 82,280 82,284 82,276 

Avg wait time (min) 3.19 min 3.25 3.29 3.15 3.16 3.19 

Avg traveled distance per person (mi) 4.48 mile 4.47 4.54 4.33 4.34 4.36 

Avg VMT per SAV (mi) 173.7 mile 191.3 213.8 177.5 195.9 218.4 

% eVMT 23 23 24 25 25 25 

SAV trips/vehicle/day 37.42 trips 41.16 45.73 37.40 41.14 45.71 

Avg party size 
1.59 

occupants 

1.59 1.59 1.59 1.59 1.59 

Idle time per day (hour/vehicle) 
18.68 

hours 

18.12 17.45 18.55 17.99 17.31 

AVO (per revenue-mile)  

1.96 

occupants 

 per 

revenue-

mile 

1.96 1.99 1.88 1.89 1.90 

In general, the profitability of SAVs decreases with 6-seater vehicles, including both economy 2 

and premium options, offering fares equivalent to those of standard-sized SAVs as shown in 3 

Table 4 Fleet Costs and revenue metrics for the Bloomington region with service choices, DRS. 4 

This is due to the higher operational and purchase costs associated with the 6-seater vehicles. 5 

The decrease in fleet size (from 2200 to 1800) resulted in an increase in the average daily profit 6 

per SAV by 21.2% across all the services ($170/SAV/day to $206/SAV/day) with DRS. When 7 

performing a comparison of the average daily profit per SAV across all scenarios and services, it 8 

is observed that the model with DRS (shown in Table 4 Fleet Costs and revenue metrics for the 9 

Bloomington region with service choices, DRS and Table 5 Fleet costs and revenue metrics for 10 

the Bloomington region with service choices, NO DRS) yields higher profit than the model using 11 

DRS.  To analyze the financial viability of offering specialized services as opposed to offering a 12 

standard Shared Autonomous Vehicle (SAV) service. In the Bloomington region, we 13 

conducted SAV operations in the absence of a service choice model. The findings, as presented 14 

in Table 3 Fleet performance metrics for the Bloomington region without service choices 15 

demonstrate a 15.5% decrease in the average VMT and 35% in the empty VMT per SAV per day 16 

and a consistent reduction in the average waiting time across all the scenarios when services are 17 

not provided. The observed event can be attributed to the process of efficiently pairing trip 18 

requests with the best-suited and nearest vehicle, resulting in a natural augmentation of 19 

circulation within the network and thus adding more wait time and vehicle miles to the network. 20 

The reduction in the number of unoccupied vehicle miles is due to the fact that the operator opts 21 

for the closest vehicle to the passenger's location, thereby eliminating the necessity to match 22 

specific services.  23 

  24 
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Table 4 Fleet Costs and revenue metrics for the Bloomington region with service choices, DRS 1 
  Scenario 1 Scenario 2 Scenario 3 

  Standard XL Standard XL Standard XL 

  Eco Lux Eco Lux Eco Lux Eco Lux Eco Lux Eco Lux 

SAV fleet 

size (100% 

population) 

2200 2000 1800 

Population 

per SAVs 
54 60 66 

Total cost 

($) 

           

17,369 

      

8,770 

     

23,345  

     

11,540  

    

17,550  

      

8,852 

    

22,709  

    

11,103  

    

17,959  

      

8,477  

    

22,977 

    

10,591  

Total 

revenue ($) 

           

66,811 

    

22,932  

     

53,295  

     

16,964  

    

67,025 

    

23,592  

    

52,614  

    

16,998  

    

67,926  

    

22,733  

    

52,532  

    

16,741  

Profit (%) 284.7 161.5 128.3 47.0 281.9 166.5 131.7 53.1 278.2 168.2 284.7 161.5 

Net profit 

across 

service types 

(%) 

162% 166% 167% 

Profit per 

passenger 

served ($) 

$3.0 3.8 2.6 2.1 3.0 3.9 2.6 2.2 3.1 3.9 3.0 3.8 

Profit per 

trip ($) 
$2.7 3.0 2.1 1.6 2.6 3.1 2.1 1.8 2.7 3.1 2.7 3.0 

Revenue per 

SAV ($) 
$369 332 246 204 379 342 284 246 430 367 302 299 

Profit per 

SAV ($) 
$273.2 205.2 138.0 65.3 279.5 213.6 161.6 85.4 316.2 229.9 169.9 109.8 

 2 

Table 5 Fleet costs and revenue metrics for the Bloomington region with service choices, NO DRS 3 
 Scenario 1 Scenario 2 Scenario 3 

 Standard XL Standard XL Standard XL 

 Eco Lux Eco Lux Eco Lux Eco Lux Eco Lux Eco Lux 

SAV fleet size 

(100% population) 
2200 2000 1800 

Population per 

SAVs 
54 60 66 

Total cost ($) $16,808 9,036 24,072 11,674 16,502 9,063 24,202 11,038 16,849 9,225 23,922 10,930 

Total revenue ($) $64,718 23,866 54,248 17,818 63,373 24,318 55,634 17,572 64,298 24,634 54,685 16,989 

Profit (%) 285 164 125 53 284 168 130 59 282 167 129 55 

Net profit 161% 164% 163% 

Profit per passenger 

served ($) 
$3.4 3.9 2.6 2.2 3.4 3.9 2.6 2.4 3.4 4.0 2.6 2.2 

$ Profit per Trip $2.7 3.1 2.0 1.7 2.7 3.1 2.1 1.9 2.7 3.1 2.1 1.8 

Revenue per SAV 

($) 
$358 346 250 215 391 419 327 293 374 342 288 257 

Profit per SAV ($) $265 215 139 74 289 263 185 109 276 214 162 92 

  4 
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Table 6 fleet costs and revenue metrics for the Bloomington region without service choices 1 

 DRS NO DRS 

 Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 

SAV fleet size (100% population) 2200 2000 1800 2200 2000 1800 

Population per SAVs 54 60 66 54 60 66 

Total cost ($)  $34,151   33,692   33,356   34,782   34,377   33,972  

Total revenue ($)  $99,912   99,794   100,965   97,395   97,530   97,780  

Profit (%) 193 196 203 180 184 188 

Net profit 197% 193% 

Profit per passenger served ($) $1.32 1.32 1.31 1.34 1.33 1.34 

$ Profit per Trip $1.60   1.61   1.64   1.52   1.53   1.55  

$ Revenue per SAV $181.7   199.6   224.4   177.1   195.1   217.3  

$ Profit per SAV  $119.6   132.2   150.2   113.8   126.3   141.8  

 2 

Figure 2 temporal distribution of average SAV trip requests with service types across all 3 

scenarios – DRS illustrates the temporal distribution of SAV demand for all service types over a 4 

simulation period. The figure presented displays the data obtained from averaging the number of 5 

trip requests across three different scenarios, involving fleets of sizes 2200, 2000, and 1800, all 6 

of which had the DRS strategy enabled. The peak demand for standard economy service requests 7 

occurs during the time periods of 8:00 and 9:00 a.m., and 5:00 and 6:00 p.m. In contrast, the 8 

highest number of XL economy service requests is observed between 7:00 to 8:00 a.m., and 2:00 9 

to 3:00 p.m. The demand for luxury services exhibits minimal temporal fluctuations. The 10 

demand for standard luxury experiences exhibits a notable increase after 8 AM, maintains a 11 

relatively stable level until 6 PM, and subsequently experiences a gradual decline.  12 

Figure 3 Profit per SAV for each scenario with and without service choices shows that the 13 

average daily profit (in dollars) per SAV with service choices goes up in the scenarios with 14 

larger SAV fleets (one SAV for 54 people and one SAV for 60 people) and has equivalent profits 15 

compared to the operator without service choices when the fleet size is reduced to one SAV for 16 

54 people. The reason for this trend in the first two scenarios is that a larger fleet size leads to a 17 

decrease in the number of empty VMT, resulting in lower operational costs. Additionally, the 18 

inclusion of premium services contributes to the overall profit by generating additional marginal 19 

profit (due to its higher fares). However, in the latter case, the operational costs offset the 20 

additional marginal profit generated by luxury services, resulting in an equivalent level of 21 

profitability compared to a scenario where only economy services are provided to customers.  22 

The average percentage increase in VMT and empty VMT per SAV post implementation of the 23 

service choice model was 18% and 55% respectively as depicted in Figure 4 Percentage change 24 

in average VMT, empty VMT and profit per SAV .  25 
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Figure 2 temporal distribution of average SAV trip requests with service types across all scenarios 3 
– DRS 4 

 5 

 6 
 7 

Figure 3 Profit per SAV for each scenario with and without service choices 8 
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 1 
Figure 4 Percentage change in average VMT, empty VMT and profit per SAV after 2 

implementation of service choice model.  3 

CONCLUSIONS 4 

This research investigates the relative effects of providing various service options within a single 5 

SAV fleet, both with and without the implementation of a dynamic ride-sharing strategy. A 6 

comparison was conducted between two scenarios, one involving service offerings and the other 7 

without, using the POLARIS, which is an agent-based simulator. In the initial scenario, individuals 8 

were provided with a choice between two categories of services: luxury and economy. 9 

Additionally, they were given the option to select between two types of vehicles: standard (4-10 

seater) and XL (6-seater). The application of fares was determined based on the specific service 11 

type that was requested. In the second scenario, people were exclusively provided with a standard 12 

economy vehicle. SAV services on a sample representing 25% of the population in the 13 

Bloomington region, which covers an area of 74 square miles. The analysis of various fleet sizes 14 

and service options reveals that the implementation of DRS led to a 21.2% ($170/SAV/day to 15 

$206/SAV/day) increase in the average daily profit per SAV as compared to the scenarios without 16 

DRS. Results show a clear preference for standard economy services during peak commute hours 17 

(8:00 to 9:00 a.m., and 5:00 to 6:00 p.m.). This demand stems from individuals who tend to 18 

prioritize time over quality of service for work trips. Furthermore, the mean daily profit (measured 19 

in dollars) per SAV with service options exhibits a 23% and 19% increase in scenarios with fleet 20 

sizes of 2200 and 2000, respectively. However, when the fleet size is reduced to 1800, the operator 21 

without service choices still generates equivalent profits. This is because fewer vehicles had to 22 

serve a larger population, resulting in increased circulation within the network and subsequently 23 

contributing to higher operational expenses. Additionally, scenarios offering different services 24 

show an average rise of 55% in empty VMT but simultaneously generate 54% more profit than 25 

scenarios where service choices are not available. Thus, it is necessary to enact policies on SAV 26 

fleet operators in the future to curb empty VMT in the traffic network.  27 

The inherent complexity of AV design and manufacturing has resulted in constraints that hinder 28 

SAV fleet operators from providing a diverse range of services to their customers. Therefore, it is 29 

recommended that these SAV services be taken into account for future fleet operations. The 30 

present study has certain limitations that may be subject to further investigation in future studies. 31 
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For example, it is critical to consider adapting fares based on the type of vehicle utilized. In this 1 

study, it is argued that XL vehicles should be priced higher than standard vehicles, despite the 2 

current situation where both types of vehicles have the same cost. Utilizing empirical data from 3 

real-world scenarios, specifically pertaining to individuals' selection of services for SAVs, is 4 

imperative in constructing accurate models of service preferences. This approach is particularly 5 

important due to the potential divergence in service choices between SAVs and traditional TNC 6 

services, primarily stemming from the relatively low likelihood of individuals initially favoring 7 

SAVs as their primary mode of transportation. 8 
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