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ABSTRACT 37 
The increasing demand for electricity from electric vehicles (EVs) will require new paradigms to 38 
guarantee reliable and low-cost electricity. This study evaluated an approach to coupling an agent-39 
based travel demand simulator and an electricity grid model to assess the economic costs of 40 
supplying power to meet this additional demand in Chicago. The study found that shifting from 41 
personal EVs to a fleet of shared, fully-automated all-electric vehicles (SAEVs) could lower per-42 
mile emissions, congestion, and embodied vehicle and charging infrastructure emissions. The 43 
results should compel policymakers to shift the cost of providing power onto commercial 44 
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customers, like electric ride-hail fleets, through price-indexed electricity prices, which can shift 1 
charging to off-peak periods or away from resource-scarce hours. 2 

Keywords: integrated modelling, electrified mobility services, electrified transportation systems, 3 
infrastructure systems, agent-based modelling, transportation simulations, electric vehicles, 4 
shared autonomous electric vehicles 5 

MOTIVATION 6 

Speeding up the transition from gas- or diesel-powered personal, light-duty vehicles to zero-7 
emission vehicles is necessary for developed countries to meet voluntary climate change targets 8 
(1), provided that the power system transitions to low-carbon generation sources. Variable 9 
renewable energy (VRE) technology, like solar and wind, with no fuel costs and small variable 10 
costs, is economically advantageous to fossil fuel generation, thanks in part to production and 11 
investment tax credits and a small levelized cost of electricity (2). In addition to supply-side 12 
changes, the electrification of heating sources, home appliances, and vehicles will increase 13 
electricity demand and change its spatial-temporal distribution pattern. Under aggressive 14 
electrification scenarios, the U.S. may need to double or triple its installed generation capacity 15 
between 2018 and 2050 (3). Large-scale adoption of electric vehicles (EVs), to an extent, also 16 
shifts decarbonization responsibility to another sector: the power system. The EV transition 17 
increases interdependencies between the transportation and power sectors, which have historically 18 
operated independently, despite both impacting household budgets at the individual level and 19 
overlapping rights-of-way at the network level. 20 

Charging infrastructure access, electricity rate design, and EV charging control are strategies that 21 
can influence charging behavior and the expected rise in electricity demand (4). Studies have 22 
investigated the effect of EV charging at different scales, from the power distribution system 23 
effects of increased personal EV adoption (5–10) to transmission and generation-level effects (11–24 
19). The granular scale helps one understand how unmanaged charging may increase co-incident 25 
peak loads in residential neighborhoods, age equipment faster, and lead to grid capacity upgrades. 26 
On the other hand, macroanalysis shows the importance of load flexibility in avoiding an increase 27 
in emissions, deferred capacity expansion to meet peak demand, reduced investment in utility-28 
scale energy storage, and increasing reliability in the system in the face of climate change. 29 

EVs could be important grid assets in smoothing the balance between supply and demand at 30 
different time scales. Personal EV owners may allow their local power companies to stagger or 31 
directly control charging at their workplaces and/or homes (20–22). If the cost of electricity is 32 
indexed to real-time marginal generation costs (i.e., wholesale power prices), then EV ride-hailing 33 
fleets may seek to lower their electric bills by charging during off-peak hours, assuming this 34 
coincides with periods of low passenger demand (23–25). Price signals are a form of smart or 35 
managed charging that can reshape the EV charging demand curve (26), and mitigate co-incident 36 
peak demand. The importance of studying the grid impacts of large-scale EV adoption also 37 
requires understanding how emerging mobility, like shared, autonomous, electric vehicles 38 
(SAEVs), could reshape urban mobility and change charging profiles away from assumptions in 39 
previous studies that mainly focused on personal EVs (27). 40 

While many have studied the implications of personal, light-duty vehicle electrification on grid 41 
resource adequacy (26), studying EVs within the context of using on-demand SAEVs is a 42 
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challenge with technological delays in autonomous vehicle testing and deployment. The timing of 1 
the transition to SAEVs depends on technology learning curves, human factors, falling costs, and 2 
regulations (29). Likewise, the transition to low-carbon power generation depends on declining 3 
energy storage technology costs, government mandates, grid interconnection reviews, land use 4 
policies, and public-private investments (30). Regardless of the timing, the scientific consensus is 5 
that a quick transition from fossil-fuel-powered vehicles and power plants to zero- or low-carbon 6 
alternatives is necessary to avoid the catastrophic effects of climate change (31, 32). 7 

SAEV fleet charging decisions, vehicle utilization, battery capacity, and infrastructure investments 8 
all impact charging demand. Unlike personal EVs, which are parked for over 95% of an average 9 
day (33), passenger-serving fleet vehicles may be busy 8+ hours per day (34). Moreover, SAEV 10 
fleets will need to return to central hubs for cleaning, maintenance, and maybe even charging (if 11 
wireless or automatic plug-in adapters at fleet-owned charging stations are not in use) (35). 12 
Centralized charging infrastructure can reduce land acquisition or leasing costs but increase 13 
deadheading between trip ends and charging hubs. Investing in fewer charging outlets can reduce 14 
costs and increase charger use, but limits SAEV fleet use for power grid benefits, like load shifting. 15 

SAEVs can have significant impacts on electricity systems, not only due to added power demands 16 
– but also centralized fleet-control’s benefits, like charging modulation in response to transmission 17 
congestion, VRE generation, and total load on the local transformer. Demand-side flexibility is an 18 
important tool in increasing the power grid’s reliability, and removing the human driver from 19 
charging decisions offers greater certainty when relying on EVs as a grid resource. Future SAEV 20 
fleets may offer bi-directional charging (23, 24, 36) and help grid operators avoid rolling power 21 
outages (27). As the transportation and electricity sectors converge and new modes of transport 22 
emerge, integrated models are necessary to identify the opportunities and challenges of this 23 
transition. 24 

In this study, an agent-based transportation simulator estimates the daily charging demand for 25 
personal (household-owned) EVs and a fleet of SAEVs under different adoption levels for the 26 
Greater Chicago metro region, covering 20 counties with nearly 11 million people. The daily 27 
charging demand is added to a state-wide power system operational model with least-cost unit 28 
commitment and economic dispatch functions to understand changes in wholesale power prices 29 
from large-scale vehicle electrification. The study first shows the effect of switching from internal 30 
combustion engine vehicles (ICEVs) to EVs while holding Chicago’s destination and mode 31 
choices constant (a fuel-switching-only scenario). Then a range of scenarios are used to understand 32 
how SAEVs, shared rides (with strangers), and smart-charging price signals mitigate increases in 33 
power costs for everyone, while lowering per-passenger mile emissions and excess investments in 34 
household EVs and chargers. The scenarios simulate the transportation-energy transition in 2035 35 
under different SAEV mode splits within a 2,360 square-mile geofence (service area). Seasonal 36 
effects are captured through EV energy consumption, non-transportation power demand (i.e., 37 
load), and VRE generation to provide robust results. The results reveal planning insights for future 38 
all-electric mobility solutions, like SAEVs, and capture the interdependent relationship between 39 
additional EV charging load on wholesale power prices and smart charging decisions. 40 

The following sections describe the modeling framework, assumptions made, data sets used, and 41 
charging strategies applied, before showing results and conclusions, along with recommendations 42 
for policymakers and future research. 43 
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METHODS 1 

The study’s first contribution is a framework for integrating power systems operation model and 2 
a discrete-event transportation simulator. The transportation simulation covers the 20-county 3 
Greater Chicago region and simulates a 24-hour period of typical weekday travel demand, 4 
including urban, freight, and commercial vehicle trips that are internal or external to the region. 5 
Charging demand was simulated for the region based on a day’s typical travel and assumptions on 6 
charging frequency and access to charging stations. The underlying vehicle ownership choice 7 
model, calibrated to present-day data and demographics (like household income), was adjusted to 8 
increase the probability of choosing an electric powertrain vehicle. Charging control scenarios, 9 
including different electric utility rates (i.e., prices) and charging equipment timers to delay 10 
charging, were used to compare them to unmanaged charging. The total charging demand was 11 
added to the baseload electricity demand curve. The power system model uses unit commitment 12 
and economic dispatch to find the least-cost set of generators to dispatch to meet electricity demand 13 
at all hours of the day while respecting transmission constraints. The model also determines the 14 
marginal generation cost of each node at the transmission network, serving as the electricity 15 
wholesale prices. 16 

The workflow for this at-scale power analysis is shown in Figure 1. The assumption taken was that 17 
a large fleet of SAEVs may be price makers (or at least price influencers), with sufficient aggregate 18 
charging demand to affect generation costs (and eventually electricity prices) in the power model. 19 
The respective scenario inputs for personal EVs and SAEVs are shown in grey boxes on the left-20 
hand side. The results from the power system model (e.g., costs and generator status) are returned 21 
to the transportation simulation if electricity prices are indexed to the wholesale market. 22 

 23 

Figure 1 Workflow of the at-scale power analysis 24 
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Electricity Consumption 1 

This study simulates two on-road adoption levels for 2035: 8% and 17% adoption, which would 2 
require a high EV sales share through 20351. Since most early adopters of EVs are wealthy 3 
residents and urban dwellers (40), these targets for the Greater Chicago region may be attainable 4 
with accelerated vehicle turnover rates. Using adoption targets and choice models to explain travel 5 
patterns, vehicle ownership, and charging options, the transportation simulation tool, POLARIS, 6 
keeps track of vehicle movements throughout the region’s travel network to reflect heterogeneity 7 
in energy consumption based on traffic levels. The traffic flow model with dynamic traffic 8 
assignment provides the travel records for the region (41). A machine-learning algorithm predicts 9 
energy consumption based on vehicle trajectories across the synthetic road network (42) and 10 
updates vehicle battery levels throughout the simulation. 11 

To estimate the effects of widespread EV adoption and increasing reliance on SAEVs, the 12 
aggregate charging load is added to the non-transportation (or baseload) consumption profile. 13 
Population growth, economic output, and cross-sector decarbonization (namely, switching from 14 
fuel to electric for heating) will also increase baseload consumption of electricity. This study 15 
applies a year-over-year growth factor that varies by month and hour based on estimates from the 16 
National Renewable Energy Laboratory (NREL) Cambium model (43). The average growth factor 17 
across twelve months and twenty-four hours is 1.19%, which is less than the 1.23% assumed in 18 
the well-cited 2050 medium-rapid electrification scenario in Mai et al. (3). 19 

The grid model, A-LEAF, is a combined least-cost unit commitment and economic dispatch model 20 
written in Python that models the generation and transmission of power (44). A mixed-integer 21 
linear program determines the commitment status of generators to balance supply and demand for 22 
each hour of the day (i.e., unit commitment), followed by a sub-problem that solves a linear 23 
program for power levels from each committed generator (i.e., economic dispatch). This study 24 
used 2015 generator data to compare a business as usual case and a predicted future with coal 25 
retirement and VRE capacity generation exceeding natural gas, since wind and solar capacity 26 
factors are less than those for thermal power plants (45). 27 

Charging Strategies 28 

Demand-side flexibility is critical to support VRE and avoid costly upgrades owing to steeper 29 
demand for electricity. Thus, many power companies are using pricing, such as time-of-use (TOU) 30 
rates, to avoid a co-incident peak in electricity demand (46). To take advantage of these off-peak 31 
prices, vehicles or charging equipment use timers to delay or stagger charging. In contrast, SAEV 32 
fleets will seek to minimize electricity purchasing costs and downtime of vehicles and increase the 33 
utilization of chargers to avoid excess investments in infrastructure. Using wholesale power prices 34 
to incentivize off-peak charging or TOU rates is expected instead of timer-based solutions. This 35 
study uses an optimization-based control strategy that relays prices into within-day idle vehicle 36 
dispatch decisions (23). Interested readers are referred to Dean et al. (23) for details on the 37 
methodological framework.The flat electricity price in this study, $76.36/MWh, is based on the 38 
bundled rate available for medium-load commercial customers with secondary voltage 39 
connections in ComEd’s service region (47). The study assumes the residential TOU rate can apply 40 

 
1 In Norway, the 8% personal vehicle fleet share was reached by 2019, when over 50% of new vehicles sold were 
EVs. It is projected that 17% fleet share will be reached in 2022, when 80% of new vehicles sold will be EVs (39).  



 

6 

to commercial customers, of which there are three time-varying prices2: off-peak prices apply 1 
between the hours of 10 PM and 6 AM ($25.95/MWh), super-peak prices apply between 2 PM 2 
and 7 PM ($68.58/MWh), and peak prices between 6 AM and 2 PM and again between 7 PM and 3 
10 PM ($34.19/MWh) (48). Customers can also choose to pay a wholesale-indexed rate plan 4 
without any markup on the rate, which can reduce the customer’s average power bill. Since the 5 
additional demand from EVs will require an additional supply of power, the prices of the wholesale 6 
market cannot be assumed to be stable, as in Dean et al. (23). As a result, the stable wholesale 7 
price found in the coupled power-transportation model, shown in Figure 2, is used in the study 8 
results. 9 

In contrast to SAEVs, personal EVs charge between activities, including at-home and at-work 10 
activities, provided there are chargers at these locations (i.e., “top-off” charging). Once a personal 11 
EV arrives at a destination, a heuristic determines whether to create an unplanned charging trip. If 12 
an EV’s expected energy consumption for the next planned trip decreases the state of charge (SOC) 13 
below an individual’s absolute minimum threshold (i.e., a random draw between 3% and 10%), 14 
the driver searches for a public charging station that minimizes the total detour and wait delay. 15 
Although there are a growing number of EV-managed charging pilots and EV-specific TOU rates 16 
(49), this study assumes drivers of EVs are not influenced by prices. 17 

Scenario Definitions 18 

The study compares the transportation and power system impacts of personal EVs and SAEVs. 19 
Scenarios include electricity prices, charging strategies, adoption percentages of new technology, 20 
ride-sharing acceptance (for SAEVs), and seasonal effects. Seasonality impacts include adjusting 21 
the energy consumption of EVs based on auxiliary loads and the baseline demand for electricity, 22 
both of which are driven primarily by heating, ventilation, and air conditioning (HVAC). Personal 23 
EV and SAEV electricity consumption changes are assumed to follow real-world all-electric taxi 24 
performance. Hao et al. (50) estimated a 3.3% increase in energy consumption during the summer 25 
from HVAC use and a 30% increase in the winter due to poor performance in colder temperatures. 26 

Personal light-duty EV adoption scenarios include low (8%) and high (17%) EV ownership as well 27 
as charging infrastructure supply. The public charging station siting scenarios are defined as low 28 
(1 charger per 35 vehicles) and high deployment (1 charger per 13 vehicles). Home charging 29 
availability was randomly assigned based on adoption targets of 61% in single-family dwellings 30 
and 5% in multi-family dwellings, such that 41% of households with light-duty EVs had a home 31 
charger in the Chicago metro.SAEV scenarios include intra-geofence mode shares of 5%, 10%, 32 
15%, and 20%. The effect of pooling strangers via dynamic ride-sharing (DRS) to increase vehicle 33 
occupancy is tested in three scenarios: the SAEV fleet does not offer pooled rides, some customers 34 
are willing to share rides (51), and all customers are willing to share rides. Wholesale-indexed 35 
electricity prices are used as the smart charging control strategy, where SAEVs centrally 36 
coordinate charging to lower power bill costs. The scenarios include fixed, TOU, and wholesale 37 
prices from ALEAF. The combination of scenarios results in 144 SAEV simulations (Figure 2). 38 

 
2 As of April 18, 2023, for non-summer months. The characteristic summer day in this study used the following 
approved rates for summer days: $33.50/MWh for off-peak hours, $80.10/MWh for super-peak hours, and 
$42.50/MWh for peak hours. 
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 1 
Figure 2 Combination of SAEV sensitivity analysis scenarios 2 

Network Information 3 

The synthetic transportation network includes 48,400 links and 35,800 nodes across the 20-county 4 
metro. The geofenced SAEV fleet is limited to a 2,360 sq-mile region, shown in Figure 3a, and 5 
accounts for nearly 80% of the region’s population. The transportation data was obtained from the 6 
Chicago Metropolitan Agency for Planning (CMAP). Fleet-owned charging stations with a power 7 
rating of 120 kW were generated during a warm-up simulation run to distribute charging stations 8 
5 miles apart (35). The synthetic power grid includes 20 nodes, 45 links, and 250 representative 9 
generators, with data inputs obtained from Form EIA-860 generator data. The size of the node, 10 
shown in Figure 3b, represents the share of the average annual daily load of the state. The nodes 11 
in Figure 3b are also the locations of generators in the system. The transmission lines, shown in 12 
black, transport power to ensure that each node’s demand is met with supply, based on 2015 data. 13 
As a result, demand in 2035 may exceed supply in some nodes when local VRE output drops and 14 
there is not enough transmission capacity to import electricity. The economic power system model 15 
reports the presence of congestion in the system through prices that exceed the marginal cost 16 
curves of the power plants. This economic measure is designed to incentivize demand response 17 
and energy efficiency measures in the short term and grid capacity expansion in the long term. 18 
Readers interested in the development of synthetic bulk power and transmission system networks 19 
are referred to Xu et al. (52) and Birchfield et al. (53).  20 
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a. Geofenced SAEV service area 

 

b. Power grid node-link network 

 

Figure 3 (a) Chicago metro’s synthetic road model centered on the geofenced SAEV service 1 
area with fleet-owned charging stations (orange circles, n=66) and co-located maintenance 2 

depots (white stars on orange circles, n=18), and the (b) Illinois’ synthetic power grid 3 
where each node shows the locations of the generation sources and demand sinks (purple 4 

circles) and transmission lines (black lines) connect the generation sources to demand sinks 5 

RESULTS 6 

The joint framework aggregated personal EV charging demand from the 20-county Greater 7 
Chicago metropolitan area. The first half of the results presents the case where fuel switching 8 
through fast turnover of personal EV fleets leads to less on-road emissions, but no other actions 9 
are taken in the avoid-shift-improve decarbonization framework (54). The second half of the 10 
results presents the case where the presence of on-demand SAEVs reduces household vehicle 11 
ownership, leading to mode shift behavior and some avoided travel. There are different scenarios 12 
where the fleet offers pooled rides with strangers, and either some or all passengers are willing to 13 
share. Like the low and high personal EV adoption scenarios, the results show different levels of 14 
SAEV mode share within the 2,360 sq-mile geofence to understand the at-scale impacts of fleet 15 
electrification. 16 

Transition to Personal Electric Vehicles 17 

Personal EVs are assumed to charge as needed (i.e., unmanaged), leading to more EVs charging 18 
later in the day. In other words, some motorists opportunistically charge their EVs at work and 19 
public charging stations, while most EV owners charge after returning home. The baseline 20 
demand3 for electricity in Illinois varies by season (see Figure 4). Colder months usually have a 21 
morning and evening peak, while the summer has a single peak. The baseline demand in Illinois 22 

 
3 Figure 4 plots “baseline demand,” which is non-transportation demand minus generation from distributed rooftop 
solar (seasonally adjusted) since the model does not consider distributed energy resources. 
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is highest in the summer4, and the demand curve peaks in the afternoon and early evening hours. 1 
The peak demand for a characteristic 2035 summer day is 35.0 GW between 4 and 5 PM (high 2 
public charging scenario). The additional demand for electricity from Chicago metro EVs can 3 
increase the summer peak demand by 320–580 MW (low vs. high public charging scenario), 4 
assuming unmanaged charging and drivers always charge when given the opportunity (i.e., “top-5 
off” charging behavior). In contrast, the winter peak demand between 6 and 7 PM may increase 6 
by 410–760 MW. This change in electricity demand stems from worse performance in the winter 7 
rather than seasonal changes in activities. Figure 4 displays the new demand curve for Illinois if 8 
just the 20-county Chicago metro were to quickly phase in EVs by 2035, such that the personal 9 
fleet of LDVs was 17% EVs. The first column shows results for a high number of public charging 10 
stations, and the second column reports results for a low number of charging stations. At 17% EV 11 
adoption, unmanaged charging can increase the summer peak demand by 0.9% to 1.6% and the 12 
new winter peak demand by 1.2% to 2.2%5. 13 

The increase in peak demand does not necessarily guarantee a steep increase in the cost of 14 
producing electricity. The marginal difference in wholesale energy prices due to Chicago personal 15 
EV adoption depends on the season’s baseload, VRE output, and the additional demand from EV 16 
charging. Wind output changes hourly and seasonally, resulting in a different supply curve. The 17 
true cost of electricity in real-time is found at the intersection of the demand curve and the supply 18 
curve (i.e., market clearing price or spot price). The shape of the supply curve is determined by 19 
the merit order—the least-cost sequence of power plant output capacity based on the marginal cost. 20 
VRE, with no fuel costs and very low operating costs, can shift the supply curve left or right, 21 
depending on output (see Figure 5 for the 2015 and 2035 merit order plots for the state of Illinois). 22 
To a lesser extent, the new electricity demand from EVs can shift the spot price by altering the 23 
operations of thermal power plants, which have minimum up/down times and ramping constraints. 24 

 
4 According to the 2020 Residential Energy Consumption Survey (RECS) and the 2019 American Community Survey, 
around 95% of Illinois households use electric air conditioning, while less than 20% have an electric heating system 
(55). 
5 About half of the state’s population lives within the Greater Chicago metro area. Assuming that 20% personal EV 
adoption increases peak demand by 1-2%, a 100% EV scenario might increase peak demand by 10%-20%.  
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Note: Assuming 17% fleet share and two public charging station density scenarios. 

Figure 4 Change in Illinois’ projected 2035 power demand curve due to Chicago’s 1 
unmanaged personal EVs charging in winter, spring, summer, and fall 2 
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A characteristic winter day in 2035 is likely to see a spike in wholesale prices between 5 and 7 1 
PM, while summer days see a spike at 6 PM due to additional daylight for solar generation. EV 2 
charging, if left unmanaged, can increase peak demand during the natural ramp-up in the net load 3 
curve. EV charging at home usually occurs at a lower power draw using Level 2 chargers; however, 4 
at 17% EV adoption, this additional peak demand is spread out over more hours and may lead to 5 
peak prices for an additional n hours. This study finds that winter prices may spike between 5 and 6 
8 PM and summer prices may spike between 6 and 9 PM (or an increase in high prices for 1 hour 7 
and 2 hours, respectively). 8 

 9 

 
(a) 2015                                                               (b) 2035 

Note: Solar is not plotted in (a) due to its small generation capacity in 2015 but should appear to the left of wind. 
Plot (b) ignores distributed rooftop solar, biofuel, and battery storage resources. 

Figure 5 (a) Merit order curve for Illinois power grid in 2015 and (b) predicted merit order 10 
curve for Illinois power grid in 2035 11 

The difference in projected statewide wholesale energy prices due to personal EV charging is 12 
plotted in Figure 6 using LOESS regression, where the solid purple line is the average change in 13 
price from the four scenarios (2 EV adoption levels times 2 charging access scenarios). The shaded 14 
grey region is a 95% confidence interval to account for the high uncertainty in energy price 15 
fluctuations in 2035. The statewide wholesale electricity prices will almost certainly increase in 16 
the summer and winter months in the evening hours (Figure 6), when a peak in electricity demand 17 
coincides with a drop in solar production. Spring and fall days, with a moderate temperature range, 18 
are less likely to see large fluctuations in energy prices due to unmanaged EV charging. If 19 
transmission capacity is expanded to reduce congestion, then the true increase in price due to the 20 
merit order of generators may more closely resemble the projected increase in Figure 6.  21 
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 1 

2 

 3 
Note: Y-axis scale differs for each subfigure. LOESS regression-generated mean line in purple with 95% confidence 4 

interval band captures wide estimate from 4 data points for each hour (2 EV adoption levels x 2 public charger 5 
scenarios). 6 

Figure 6 Average change in Illinois’ projected 2035 hourly wholesale electricity prices due 7 
to Chicago personal EV adoption by season 8 

Shared Autonomous Electric Vehicles 9 

SAEV fleet operators can make centralized charging decisions and are flexible to price signals that 10 
incentivize off-peak charging. The study reports findings from scenarios that used a fixed price, 11 
which is equivalent to unmanaged charging, and two price-based managed charging strategies: 12 
TOU and wholesale-indexed prices. Table 1 reports mobility and vehicle statistics for an SAEV 13 
fleet under different mode share levels, DRS acceptance, and electricity prices for a characteristic 14 
seasonal day (where air temperatures do not increase vehicle energy consumption or increase 15 
HVAC loads on the state’s electrical grid). 16 
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TABLE 1 SAEV Mobility & Vehicle Statistics by Mode Share, DRS Acceptance, and Electricity Price. 1 

Metrics 
Unmanaged Charging: Flat Electricity Prices (Spring/Fall) 

SAEV (No DRS) SAEV + DRS Acceptance Model SAEV + 100% DRS Acceptance 
Mode Share 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 
Avg. Response Time 
(min) 5.0 min 4.7 min 4.9 min 5.9 min 4.3 min 4.1 min 4.2 min 4.8 min 4.3 min 4.1 min 4.1 min 4.3 min 
Avg Person-Trips/ 
SAV/day 

24.3 
trips 

24.4  
trips 

22.7  
trips 

21.2 
trips 

26.3 
trips 

26.6 
trips 

26.1 
trips 

23.9 
trips 

26.2 
trips 

26.6 
trips 

26.3 
trips 

25.1 
trips 

Avg. SAV VMT/day 292 mi 308 mi 303 mi 298 mi 285 mi 301 mi 303 mi 300 mi 284 mi 300 mi 304 mi 295 mi 
%eVMT 43.6% 41.4% 42.2% 43.0% 40.6% 38.0% 38.2% 40.0% 40.5% 37.9% 37.8% 37.9% 
Charging 
(kWh/SAV/day) 

81.5 
kWh 

86.4 
kWh 

84.0 
kWh 

71.2 
kWh 

79.1 
kWh 

86.9 
kWh 

84.2 
kWh 

70.5 
kWh 

80.2 
kWh 

84.6 
kWh 

84.9 
kWh 

76.5 
kWh 

AVO 2.50 2.50 2.50 2.50 2.69 2.74 2.77 2.81 2.69 2.74 2.77 2.79 

Metrics 
Managed Charging: Time-of-Use (TOU) Electricity Prices (Spring/Fall) 

SAEV (No DRS) SAEV + DRS Acceptance Model SAEV + 100% DRS Acceptance 
Mode Share 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 
Avg. Response Time 
(min) 5.0 4.9 6.2 4.8 4.4 4.2 4.9 4.3 4.3 4.1 4.1 4.3 

Avg Person-Trips/ 
SAV/day 25.0 24.7 21.7 23.5 27.1 27.1 24.9 25.7 26.2 27.3 26.3 25.5 

Avg. SAV VMT/day 300 313 305 310 295 307 302 302 284 307 304 301 
%eVMT 43.8% 41.5% 44.0% 41.2% 40.8% 38.0% 39.9% 37.7% 40.5% 37.6% 37.9% 38.1% 
Charging 
(kWh/SAV/day) 80.3 87.9 82.4 81.7 79.8 87.8 82.1 79.5 79.0 87.9 80.2 80.3 

AVO 2.50 2.50 2.50 2.50 2.70 2.74 2.79 2.80 2.69 2.74 2.77 2.79 

Metrics 
Managed Charging: Wholesale-Indexed Electricity Prices, Endogenously Derived (Spring) 

SAEV (No DRS) SAEV + DRS Acceptance Model SAEV + 100% DRS Acceptance 
Mode Share 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 
Avg. Response Time 
(min) 5.3 5.0 5.3 4.8 4.5 4.2 4.2 4.5 4.5 4.1 4.2 4.2 
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Avg Person-Trips/ 
SAV/day 24.3  24.2 23.5 23.4 24.7 27.1 26.3 26.3 24.5 26.9 27.0 26.5 

Avg. SAV VMT/day 296 306 317 311 291 300 310 305 270 300 305 307 
%eVMT 44.4% 41.2% 42.9% 40.9% 41.5% 37.1% 39.1% 39.9% 41.8% 37.1% 37.5% 37.7% 
Charging 
(kWh/SAV/day) 92.6 84.0 83.7 81.9 87.3 84.3 81.6 81.0 73.2 85.0 80.2 81.8 

AVO 2.50 2.50 2.50 2.50 2.70 2.74 2.77 2.80 2.69 2.74 2.78 2.80 
Metrics Managed Charging: Wholesale-Indexed Electricity Prices, Endogenously Derived (Fall) 
 SAEV (No DRS) SAEV + DRS Acceptance Model SAEV + 100% DRS Acceptance 
Mode Share 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 
Avg. Response Time 
(min) 5.2 4.9 4.9 4.8 4.5 4.1 4.2 4.1 4.3 4.3 4.4 4.3 

Avg Person-Trips/ 
SAV/day 24.6 23.2 24.3 23.6 26.9 27.3 26.8 26.7 27.2 26.9 26.3 24.7 

Avg. SAV VMT/day 299 301 319 312 290 302 313 307 294 305 303 291 
%eVMT 44.1% 40.9% 41.8% 41.4% 41.7% 37.3% 38.2% 37.4% 40.5% 38.2% 37.9% 38.9% 
Charging 
(kWh/SAV/day) 85.4 81.2 83.8 82.9 75.6 88.1 76.3 79.4 83.4 87.7 80.2 69.4 

AVO 2.50 2.50 2.50 2.50 2.70 2.74 2.78 2.80 2.69 2.75 2.79 2.79 

Metrics 
Unmanaged Charging: Flat Electricity Prices (Summer) 

SAEV (No DRS) SAEV + DRS Acceptance Model SAEV + 100% DRS Acceptance 
Mode Share 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 
Avg. Response Time 
(min) 5.0 4.7 4.8 4.7 4.4 4.2 4.3 4.0 4.3 4.2 4.3 4.5 

Avg Person-Trips/ 
SAV/day 24.3 24.1 23.6 23.7 26.2 26.6 26.7 26.7 26.2 26.5 26.5 25.2 

Avg. SAV VMT/day 292 306 303 314 285 302 303 308 284 302 302 300 
%eVMT 43.8% 41.6% 41.6% 41.2% 40.7% 38.3% 36.5% 37.1% 40.6% 38.5% 36.6% 38.4% 
Charging 
(kWh/SAV/day) 80.5 86.3 83.4 101.1 79.2 89.6 90.2 101.1 79.1 89.5 90.2 93.2 

AVO 2.50 2.50 2.50 2.50 2.69 2.74 2.78 2.80 2.69 2.74 2.78 2.50 
Metrics Managed Charging: Time-of-Use (TOU) Electricity Prices (Summer) 
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SAEV (No DRS) SAEV + DRS Acceptance Model SAEV + 100% DRS Acceptance 
Mode Share 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 
Avg. Response Time 
(min) 5.1 4.9 5.0 4.6 4.3 4.2 4.1 4.5 4.3 4.2 4.3 4.0 

Avg Person-Trips/ 
SAV/day 25.0 24.7 23.2 23.9 27.3 27.2 26.6 25.2 26.2 26.5 26.5 26.6 

Avg. SAV VMT/day 301 314 304 316 295 308 302 304 284 302 302 309 
%eVMT 44.0% 41.8% 40.8% 41.0% 40.6% 38.1% 36.4% 38.8% 40.6% 38.5% 36.6% 37.4% 
Charging 
(kWh/SAV/day) 80.2 90.5 91.5 101.6 79.8 90.8 90.6 94.2 79.1 89.5 90.2 101.7 

AVO 2.50 2.50 2.50 2.50 2.70 2.75 2.77 2.81 2.69 2.74 2.78 2.80 

Metrics 
Managed Charging: Wholesale-Indexed Electricity Prices, Endogenously Derived (Summer) 

SAEV (No DRS) SAEV + DRS Acceptance Model SAEV + 100% DRS Acceptance 
Mode Share 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 
Avg. Response Time 
(min) 5.2 4.9 5.8 4.9 4.4 4.3 4.7 4.3 4.3 4.2 4.4 4.3 

Avg Person-Trips/ 
SAV/day 24.6 24.9 21.4 23.9 26.9 26.7 26.9 26.1 27.2 26.8 26.5 25.4 

Avg. SAV VMT/day 298 311 286 310 296 305 284 279 294 301 302 304 
%eVMT 44.0% 40.8% 41.9% 40.0% 41.3% 41.3% 37.5% 37.5% 40.6% 37.6% 37.0% 36.2% 
Charging 
(kWh/SAV/day) 88.5 89.0 76.4 100.3 85.3 91.0 82.2 76.4 82.6 85.2 102.2 99.4 

AVO 2.50 2.50 2.50 2.50 2.70 2.75 2.79 2.80 2.69 2.74 2.78 2.81 

Metrics 
Unmanaged Charging: Flat Electricity Prices (Winter) 

SAEV (No DRS) SAEV + DRS Acceptance Model SAEV + 100% DRS Acceptance 
Mode Share 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 
Avg. Response Time 
(min) 6.2 5.8 6.1 5.6 5.1 4.6 4.6 4.4 5.1 4.6 4.6 6.4 

Avg Person-Trips/ 
SAV/day 22.2 22.8 21.9 22.3 24.8 25.6 26.1 25.6 24.7 25.5 26.1 19.6 

Avg. SAV VMT/day 288 305 303 310 284 299 305 306 285 299 304 261 
%eVMT 46.9% 44.3% 43.4% 43.8% 43.5% 40.2% 38.5% 39.3% 43.6% 40.2% 38.4% 42.4% 
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Charging 
(kWh/SAV/day) 97.9 105.7 107.0 121.6 98.1 108.3 109.6 121.8 99.4 108.4 113.5 93.2 

AVO 2.50 2.50 2.50 2.50 2.70 2.75 2.78 2.80 2.70 2.75 2.78 2.82 

Metrics 
Managed Charging: Time-of-Use (TOU) Electricity Prices (Winter) 

SAEV (No DRS) SAEV + DRS Acceptance Model SAEV + 100% DRS Acceptance 
Mode Share 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 
Avg. Response Time 
(min) 6.2 6.1 6.2 6.0 5.3 5.1 4.7 4.8 5.1 4.6 4.6 4.9 

Avg Person-Trips/ 
SAV/day 22.6 22.4 22.8 21.9 24.8 25.0 25.3 25.2 24.7 25.5 26.1 25.1 

Avg. SAV VMT/day 291 304 311 310 287 299 299 305 285 299 304 305 
%eVMT 46.7% 44.6% 43.7% 44.4% 43.8% 41.2% 38.9% 40.3% 43.6% 40.2% 38.4% 40.4% 
Charging 
(kWh/SAV/day) 96.3 103.9 114.7 119.8 95.8 104.3 113.8 120.2 98.2 108.4 113.5 119.7 

AVO 2.50 2.50 2.50 2.50 2.70 2.75 2.78 2.82 2.70 2.75 2.78 2.82 

Metrics 
Managed Charging: Wholesale-Indexed Electricity Prices, Endogenously Derived (Winter) 

SAEV (No DRS) SAEV + DRS Acceptance Model SAEV + 100% DRS Acceptance 
Mode Share 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20% 
Avg. Response Time 
(min) 6.3 6.5 6.4 5.9 5.2 5.1 4.9 5.0 5.2 5.3 4.9 4.9 

Avg Person-Trips/ 
SAV/day 22.0 22.0 22.9 22.2 24.8 25.1 24.6 18.9 24.4 24.1 25.4 23.8 

Avg. SAV VMT/day 291 293 300 304 284 293 318 280 285 288 298 283 
%eVMT 47.0% 44.6% 44.5% 43.0% 44.0% 40.9% 41.2% 39.3% 44.1% 41.2% 39.2% 39.4% 
Charging 
(kWh/SAV/day) 106.0 100.4 107.2 117.5 102.9 105.8 125.8 111.3 103.5 103.7 112.4 103.7 

AVO 2.50 2.50 2.50 2.50 2.70 2.76 2.79 2.81 2.70 2.76 2.79 2.81 
Note: Fleet size does not linearly scale with mode share within the geofence. The ratio of 1 SAEV to residents from 5% to 20% mode share is 1:300, 1:140, 1:105, 1 
and 1:75, respectively. Abbreviations: AVO = revenue-miles weighted average vehicle occupancy (accounting for party size), DRS = dynamic ride-sharing (or 2 
pooling).3 
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The average SAEV drove between 290 and 310 miles each day (across all mode share 1 
scenarios), with empty VMT adding upwards of 3 million VMT for each 5% increase in 2 
mode share. On average, 40% of the VMT driven by each vehicle is without a passenger (i.e., 3 
empty VMT [eVMT]). Higher duty cycles by fleet EVs lead to more energy consumption on 4 
a per-vehicle basis compared to personal EVs. On average, an SAEV that completes over 22 5 
person-trips per day will require between 85 and 110 kWh of electricity (i.e., the average 6 
person-trip consumes 3.9 to 5 kWh, including the additional eVMT consumption to support 7 
this trip; see Figure 7). In contrast, the average personal EV requires less than 12 kWh of 8 
electricity each day to operate. The average Chicago person-trip in a personal EV consumes 9 
7.7 to 9.3 kWh, which is 1.9 times more energy than with a fleet of shared SAEVs.  10 

 11 
Note: Spring and fall have no energy consumption multiplier due to auxiliary loads and normal battery 12 

performance in temperate weather, thus flat and TOU rates show no variability in fall. 13 

Figure 7 Energy consumption per person-trip by season, energy price, and DRS 14 
scenario 15 

The average vehicle occupancy (AVO) across all vehicle-miles (revenue and non-revenue) 16 
for this fleet of SAEVs ranges from 1.4 (5% mode share with no DRS) to 1.8 (20% mode 17 
share with DRS). The revenue-miles adjusted AVO metrics are shown in the results tables, 18 
which aligns with public data on driver-reported passenger counts in similar cities (i.e., New 19 
York City Taxi and Limousine Commission’s trip dataset). If fleets offer a DRS option the 20 
expected revenue-miles AVO may increase from 2.5 to 2.8. Although percent eVMT 21 
(%eVMT) is about 40% across all scenarios, DRS scenarios have about a three-percentage 22 
point decrease. If no rides are shared, almost two-thirds of empty travel occurs between 23 
customers. As DRS reduces deadheading between trip ends, the relative share of support trips 24 
(e.g., charging, maintenance, cleaning, and rebalancing vehicles) will increase from a third 25 
to over 40%. If riders take SAEVs in group settings or solo travelers are willing to share 26 
rides, the congestion impact of large-scale SAEV service may be minimized. Even with a 27 
high empty VMT, sharing vehicles, rides, and centralized dispatch of vehicles to passengers 28 
with DRS can lead to more efficient energy use relative to the status quo of driving one’s 29 
personal vehicle in sprawling regions, like Chicago. 30 
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To encourage households to give up their vehicles and use on-demand SAEV service, fleets 1 
should minimize the percentage of unmet trips. A trip is declared unmet if a customer waits 2 
more than 18 minutes before their smartphone app notifies them of their vehicle assignment. 3 
The results in Table 1 indicate that fleet operators adjusting charging decisions to lower the 4 
fleet’s electric bill, either through a set TOU rate or a wholesale-indexed rate, does not 5 
decrease the number of trips served per vehicle per day, relative to the unmanaged case of 6 
flat prices. Aligning charging with low-cost periods of electricity does not come at the 7 
expense of serving passenger trips. Further, there is evidence that a fleet minimizing 8 
electricity expenditures could decrease percent empty travel (Figure 8). 9 

In comparison to Figure 4, which shows an increase in the load curve due to unmanaged 10 
personal EV charging, Figure 9 shows the new load curve in the spring if between 5% and 11 
20% of daily Chicago trips were served by a fleet of SAEVs. These figures assume that all 12 
riders are willing to share rides, which decreases energy consumption on a per-trip basis 13 
(Figure 7). Subfigures on the left assume the region’s electricity provider does not charge 14 
time-varying electricity prices, while subfigures on the right assume the fleet pays the 15 
prevailing wholesale price and adjusts charging decisions based on day-ahead energy prices. 16 
At 20% SAEV mode share, the state’s springtime peak demand for electricity could shift 17 
from 1 PM to 8 PM (representing a 7.9% increase in demand at 8 PM) under flat energy 18 
prices. However, a fleet paying wholesale prices will try to avoid charging in the evening 19 
hours when energy prices are higher, thereby shifting charging earlier in the day and 20 
increasing the 1 PM peak by 8.9%. Shifting charging may also increase empty travel if 21 
vehicles are not near charging stations and charging station locations are far from trip pick-22 
ups. The simulation results suggest that with uniform charger placement (see Figure 3a), the 23 
percent of empty VMT does not necessarily increase with time-varying energy prices (Figure 24 
8). 25 

 26 

Figure 8 Empty travel by mode share and energy price 27 

 28 
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   1 

   2 

  3 

 4 
Note: EV demand (purple) is added to the non-transportation demand (blue). Assuming 100% DRS acceptance. 5 
 6 

Figure 9 Change in Illinois’ projected 2035 springtime power demand profile due to 7 
Chicago SAEVs charging, with and without wholesale prices (right and left panels), 8 

across different SAV mode splits 9 
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Shifts in EV charging patterns can lead to price fluctuations in statewide wholesale energy 1 
prices. Figure 10 plots projected price changes from a Chicago fleet serving 20% of trips in 2 
2035, using LOESS regression to reduce the magnitude of large price increases during hours 3 
where demand exceeds supply due to transmission constraints. Prices will increase across all 4 
seasons due to an increase in charging from SAEV adoption, which was not observed in the 5 
personal EV scenarios (Figure 6). Spring days have relatively low prices due to less 6 
electricity demand, but due to an increase in charging after midnight (Figure 9), the power 7 
grid operator dispatches additional generators to meet this new demand, raising prices for all. 8 
However, if this charging demand coincides with the midday peak, prices may rise 9 
substantially more than the midnight price increase of nearly $13/MWh, indicating that smart 10 
charging decisions can mitigate price increases. At the same time, there is an opportunity for 11 
more valley filling after midnight (Figure 9), which could reduce the expected price increase. 12 
 13 

 14 

 15 
Note: Y-axis scale differs for each subfigure. LOESS regression-generated mean line in purpose with 95% 16 

confidence interval band captures wide estimate from 12 data points for each hour (3 DRS scenarios x 4 17 
feedback-loops per scenario). 18 

Figure 10 Average change in Illinois’ projected 2035 hourly wholesale electricity 19 
prices due to a fleet of Chicago SAEVs charging by season, assuming 20% mode share 20 

Smart charging using price signals is most effective when fleets pay wholesale-indexed 21 
energy rates. Figure 11 displays the expected change in statewide electricity prices in 2035 22 
due to a fleet of SAEVs in Chicago serving 20% of daily trips. The existing rise in prices is 23 
already accounted for and any large increase reflects an extension of already high prices. 24 
Wholesale-indexed rates can avoid an extra $50/MWh increase in the evening peak. 25 
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Although TOU rates can lead to a decrease in prices in the morning hours the fleet’s charging 1 
behavior with this structure leads to higher increases in state electricity prices than flat rates. 2 
Similarly, Figure 12 displays the change in state electricity prices for the summer months. 3 
Wholesale-indexed rates are only marginally better than TOU or flat rates during the 4 
afternoon through evening hours. If fleets ignore energy prices they may end up charging 5 
more of their fleet vehicles overnight when trip demand is lower. However, unmanaged 6 
charging at scale may lead to higher increases for all energy customers (+$300/MWh). 7 

 8 
Figure 11 Change in state electricity prices due to additional electricity demand from 9 

a Chicago SAEV serving 20% of daily trips in the winter 10 

 11 
Figure 12 Change in state electricity prices due to additional electricity demand from 12 

a Chicago SAEV serving 20% of daily trips in the summer 13 
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DISCUSSION 1 

Load Shape Impacts 2 

The study finds that even at low EV ownership levels, like when 8% and 17% of personal 3 
LDVs are EVs in 2035, the unmanaged charging demand from the 20-county Chicago metro 4 
can increase the peak demand for the state by up to 2.2%. The added electricity demand 5 
depends on weather conditions, with winter having the highest relative increase in peak 6 
demand and does not consider EVs outside of this metro. If personal EVs charge between 7 
activities or immediately when the driver returns home, assuming chargers are available, the 8 
power grid must ramp up generation by 410–760 MW in the winter and 320–580 MW in the 9 
summer during the maximum 1-hour peak in electricity demand.  10 

At 20% mode share, a fleet of Chicago SAEVs can increase a spring day’s peak hour (at 1 11 
PM) electricity demand by 2,100 MW. However, this additional increase in demand is met 12 
with existing energy resources since the grid is designed around the annual peak (usually in 13 
winter or summer). In winter, the 20% fleet scenario could increase peak hour demand (at 6 14 
PM) by 1,800 MW (with DRS) to 2,400 MW (without DRS). Since the fleet expects higher 15 
energy consumption during winter months and higher energy prices at peak hours, the 16 
magnitude of the increase in energy demand during peak hours may be less in winter than 17 
during more temperate months. On the other hand, higher non-transportation demand for 18 
electricity and the additional demand from SAEVs may lead to a higher marginal increase in 19 
wholesale prices than in the spring or fall (Figure 10). This study finds the marginal increase 20 
during temperate months may be as high as +$25/MWh, but summer and winter months may 21 
see price increases of $250–$750/MWh for about five hours in the evening (adjusting down 22 
in price to forecast transmission expansion). 23 

The new peak from EVs in temperate months could be supplied by existing power plants, as 24 
indicated by the negligible increases in hourly wholesale prices (Figure 6). However, if other 25 
sectors increase their electricity demand and there are additional retirements of dispatchable 26 
fossil fuel-powered generators, capacity expansion may be warranted, especially within the 27 
Chicago region if import/export remains constant. The new peak demand may require one to 28 
two additional natural gas-fired peaker power plants with an estimated base capital cost of 29 
$958/kW for a single 1.0 GW plant (56). Alternatively, utility-scale battery storage systems 30 
with a four-hour duration requirement (see Figure 10) may meet this temporary shortfall in 31 
supply, especially since these assets are cost-competitive with peaker power plants. 32 

Effects of Vehicle- and Ride-sharing 33 

The introduction of on-demand urban passenger mobility may motivate some households to 34 
give up some or all of their personal vehicles. The household vehicle discontinuance model 35 
by Menon et al. (57) was adopted for the Chicago region and suggests that up to a quarter of 36 
its personal vehicle fleet may be retired because of this new mobility option. Encouraging 37 
households to scrap old and less efficient vehicles can greatly improve the personal vehicle 38 
fleet’s efficiency. Governments could encourage households to scrap their oldest and least 39 
efficient vehicle, based on registration data at each address, and give usable credits for 40 
mobility options like SAEVs, public transit, and micromobility. Although some households 41 
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receiving this credit will likely have scrapped their vehicle anyway (i.e., the free-rider effect), 1 
they still contribute to an important reduction in on-road emissions. 2 

The 8% and 17% personal EV fleet adoption levels would replace over 500 thousand to a 3 
million internal combustion engine vehicles with electric vehicles. In contrast, serving 20% 4 
of trips in the sprawling 2,360 sq-mile region (see Figure 3a) is handled with a fleet of 198 5 
thousand SAEVs. As a result of reliable and fast vehicle assignment and dispatch (< 5 min. 6 
response times), households let go of over 300–800 thousand personal vehicles. The 7 
embodied vehicle emissions savings are equal to the avoided production emissions of 8 
personal EVs. Production emissions depend on the carbon intensity of the grid where the 9 
battery materials were processed, assembled, and packaged into the battery pack and the 10 
vehicle, as well as supply chain transportation emissions. Dillman et al. (58) found that an 11 
average BEV produces 10.8 tons of CO2 equivalent (CO2e) during the production phase, 12 
while an average gasoline-fueled vehicle produces 6.6 tons of CO2e. At 20% mode share, the 13 
embodied emissions saved due to shared fleet vehicles relative to 20% personal EV fleet 14 
adoption is 11.4 million tons of CO2e. Relying on shared vehicles instead of private vehicles 15 
in the Chicago metropolitan area is the equivalent of avoiding over a quarter of a million U.S. 16 
households’ annual carbon footprint (59). Shifting people away from personal vehicles to 17 
shared vehicles by providing reliable and convenient alternatives is a decarbonization 18 
strategy that provides immediate benefits. 19 

And while charging infrastructure has a negligible climate impact relative to in-use emissions 20 
(60), shifting to shared vehicles reduces the number of public (and private) chargers that are 21 
needed. This study used a ratio of 5.87 SAEVs per 120 kW fast charger (or port) and assumed 22 
a high supply of public chargers to achieve a ratio of 6.22 personal EVs per 50 kW fast 23 
charger (at 17% personal EV fleet adoption). At 20% mode share, shared vehicles could 24 
avoid adding about 200 thousand public ports across 6–15 thousand public charging stations 25 
(depending on station density). The emissions reductions come from installing the cables, 26 
wiring, and digital equipment and create other co-benefits, like reducing impervious 27 
pavement across communities and the environmental damages from sourcing metallic 28 
components in charging equipment. 29 

The study compared the benefits of ride-sharing at two acceptance levels—all customers 30 
versus some customers who were willing to share rides—relative to no sharing. Offering a 31 
ride-sharing option decreased the average daily VMT for each SAEV by 7 to 15 miles, with 32 
only a small difference in benefits between 100% ride-share acceptance and a choice model 33 
by Gurumurthy and Kockelman (51). This reduction in daily VMT per vehicle is significant 34 
at scale, since 20% mode share is served with a fleet of 105,000 vehicles. Assuming a BEV 35 
emits 190 g CO2eq per mile in Illinois from in-use activity, a fleet offering ride-sharing trips 36 
could avoid 40 to 86 tons of CO2eq every weekday when serving 5% of the region’s trips. 37 
Energy consumption on a per-trip basis also declined with DRS (Figure 7). If all customers 38 
were willing to share rides and the fleet used a directionality-based matching heuristic (61), 39 
the per-trip energy savings may range from 0.27 to 0.52 kWh. At 20% mode share, Chicago’s 40 
fleetwide energy savings from a single day due to DRS may be as high as 54.6 MWh6. 41 

 
6 Equivalent to the average daily electricity consumption of 1,900 U.S. homes, according to 2021 EIA data. 
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Limitations and Future Research 1 

This paper adjusted generator information to simulate 2035 feedstocks, based on NREL’s 2 
Cambium model with an assumed business-as-usual scenario with no phase-out of tax credits 3 
and no nascent technology. Adjustments included retiring coal and oil-gas steam power 4 
plants, but due to modeling limitations the paper did not add utility-scale battery storage, 5 
which constitutes 6.1% of the state’s projected generation capacity (or 6.28 GW). Despite 6 
these limitations, the paper estimated that a 17% Chicago personal EV fleet scenario would 7 
increase winter peak demand by at most 760 MW, which could be met by a new gas-fired 8 
peaker power plant or utility-scale battery storage systems. However, the model predicted 9 
that electricity demand growth in the summer and winter months would lead to high prices 10 
and possibly curtailed demand, highlighting the need for transmission system expansion, 11 
beyond 2015 capacity, to meet decarbonization goals. 12 

This paper did not consider energy imports from other states or transmission expansion. The 13 
results indicate that these limitations underscore the importance of investing in transmission 14 
system expansion and reducing barriers to upgrading or building new transmission 15 
infrastructure. To provide insight into projected price changes in the state's wholesale market 16 
from Chicago EVs, the paper uses LOESS regression, which can mimic price changes under 17 
a limited build-out of transmission capacity because the modeling technique uses a weight 18 
function to smooth out large differences in data. 19 

There are several challenges of modeling into 2035, namely estimating the energy increase 20 
from the electrification of transportation, building, and industrial sectors. For example, the 21 
adoption of heat pumps and electrification of space heating will further increase the region’s 22 
winter baseline demand curve, which may overlap with a higher EV load due to battery 23 
performance issues in colder weather. Although wind generation performance is above the 24 
yearly median in the winter months in Illinois, solar generation capacity is lower. Potential 25 
shifts in peak demand from summer to winter will require power grid expansion planning 26 
that considers the region’s seasonally adjusted VRE generation capacity, which is not within 27 
the scope of this paper. 28 

The authors acknowledge the difficulty of fully capturing the variability in VRE output by 29 
hour and across days, as well as the variability in non-transportation load across days within 30 
the season. Future work could use more characteristic days, as well as extreme winter and 31 
summer days, to develop a more comprehensive view of the transition to a clean 32 
transportation and power system. Nonetheless, the results indicate the value of using EVs to 33 
solve problems caused by EVs (via smart charging), especially during summer and winter 34 
peak hours.  35 

Finally, there are several other assumptions in this study that may impact results, including 36 
uniform plug density at fleet-owned charging stations and the assumption of 50 kW public 37 
chargers. Future work could use optimization-based charging station siting algorithms and 38 
include heterogeneity in public chargers to develop more behaviorally realistic models for 39 
charging station selection based on one's value of travel time, trip purpose, and flexibility in 40 
the next activity. 41 
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CONCLUSIONS 1 

This study aimed to investigate the impacts of vehicle electrification and new mobility 2 
technology, like SAEVs, on the power grid using an integrated transportation-power system 3 
model. The power system model examined shifts in energy demand and wholesale power 4 
prices in Chicago due to adoption levels of EVs, seasonal effects on energy consumption, 5 
and electricity price rates. The results showed that at relatively low EV penetration levels 6 
(8% to 17%), an increase in demand may require at most 1 GW of additional generation 7 
capacity, and the state's transition to intermittent VREs and phase-out of coal power plants 8 
will likely not substantially increase wholesale power prices due to unmanaged personal EV 9 
charging at peak hours. 10 

However, the simulation results found that wholesale power prices will increase during 11 
winter (+$100/MWh) and summer (+$300/MWh) peak hours due to higher energy fees and 12 
steep congestion fees on the 2015-era transmission system. Even without this new demand 13 
for electricity from EVs, the model results indicate that prices would still spike due to 14 
inadequate transmission capacity to send power from VRE sources to demand centers like 15 
Chicago.  16 

Additionally, a fleet of SAEVs serving 20% of Chicago's regional trips is more energy 17 
efficient and avoids several hundred thousand vehicles' embodied emissions, but the higher 18 
daily use of fleet vehicles and reliance on fast charging equipment increases electricity 19 
demand and thus energy prices. Although a fleet paying wholesale prices uses these price 20 
signals to reduce electricity demand during peak hours, spreading charging demand in hours 21 
before and after the baseline peak creates new "ridges" in energy demand, which raises prices 22 
for all.  23 

The modeling framework and relative scale of the findings are relevant to both transportation 24 
and power system audiences. The results reveal the pathways that result in expected emission 25 
and cost reductions, indicating that investing in transmission lines can reduce congestion fees 26 
in wholesale markets and address spatiotemporal imbalances in energy supply and demand. 27 
At the same time, some energy customers, like EV fleets, could alter their charging behavior 28 
to avoid adding to peak demand. Finally, ride-sharing with electric vehicles avoids new 29 
embodied emissions from personal vehicles and charging equipment and can reduce energy 30 
consumption on a per-trip basis, even with high empty travel between passengers and fleet-31 
owned maintenance and charging depots. 32 
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