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ABSTRACT 

This paper shows how to quickly infer the body type, make, model and speed of vehicles using a 
single intersection camera in Austin, Texas. To develop a tuned Vehicle Make and Model 
Recognition model capable of object tracking, YOLOv4, DeepSort, and Tensorflow were used in 
conjunction with vehicle images from the ResNet-152 Cars Dataset. Regression results suggest 
motorcycles, utility vehicles, and vans average 1.5 to 0.7 km/h higher speeds than passenger cars, 
and 2.4 to 1.6 km/h higher speeds than pickup trucks. 
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INTRODUCTION 

Video surveillance cameras have been leveraged by municipalities globally to remotely enforce 
traffic laws, monitor system performance, and maintain roadway safety with reduced bias 
(“Europe’s Noise Capital Tries to Turn Down the Volume,” 2022; Frangoul, n.d.; Melecki, 2013; 
Paybarah, 2019; Tewolde, 2012; Wilson et al., 2010). These devices can be programmed to provide 
vehicle/speed tracking, identify red-light violations, read license plates, apply tolls, and analyze 
pedestrian-vehicle interactions (Al-Smadi et al., 2016; Jain et al., 2016; Makino et al., 2018; 
Manlises et al., 2015; Neuhold et al., 2019; Pesti et al., 2008; Skogan, 2019). Pedestrian crashes 
in particular have been rising in the US over the past decade with vehicles becoming larger and 
traveling faster (Ballesteros et al., 2004; Bernhardt and Kockelman, 2021; Billah et al., 2021; 
Rosenthal et al., 2022; Zuniga-Garcia et al., 2022). The spatial distribution between pedestrian 
accidents (n=3,576 from January 2012 to February 2022) and city-managed traffic cameras 
(n=369) was analyzed to identify high-risk intersections in Austin (“CRIS Query,” n.d.). Austin’s 
Mobility Management Center then shared 12 hours of footage from 3 high-crash sites, recorded 
between 1 and 3pm on Tuesday, April 5, 2022, as an example of what those videos look like. 

METHODS 

30 minutes of video from the Loop 360 at Courtyard Drive intersection (shown in Figure 1) were 
used to demonstrate application opportunities. A Vehicle Make and Model Recognition (VMMR) 
model was fine-tuned using the ResNet-152 Cars Dataset, containing 16,185 images of the 196 
vehicles. Vehicles observed heading in the southbound direction were identified by Make, Model, 
and Year, (e.g., a 2012, Tesla, Model S) (Krause et al., 2013). Image data was split into 50% 
training and 50% testing sets. Object tracking features were also implemented in this VMMR 
model, using YOLOv4, DeepSORT, and TensorFlow. Figure 1’s dark blue region detects vehicles 
upstream of the signal light, and the light green region defines the vehicle recognition area as 
shown in Figure 1. Vehicle speeds were estimated by comparing video frame rate (30 frames per 
second) with time taken by vehicles moving through the intersection to cross the red region (from 
Fig 1’s Speed 1 area to Speed 2 area). 

 



 

Figure 1. Areas for Vehicle Detection and Speed Inference 

 

Figure 2. Loop 360 and Courtyard Drive Intersection Location  

 

FINDINGS 



These speed values were used as the dependent variable (Y = vehicle speed) in the ordinary least 
squares (OLS) model, with vehicle body types, lane position, signal light status, and other AI-
inferred variables used as covariates to ascertain the relationship between speed and body type. 
Tables 1 and 2 provide summary statistics and OLS results of analyzed variables. Results 
underscore how sport and crossover utility vehicles (SUVs/CUVs) and motorcycles generally 
travel faster than cars and trucks at this intersection. The average speed of SUVs/CUVs was 1.4 
km/h faster than cars, 2.3 km/h faster than trucks, 0.7 km/h faster than vans, and 0.1 km/h slower 
than motorcycles. Those owning SUVs and CUVs may notice ground speed less and may be 
sensation seeking. Motorcyclists have better peripheral vision than vehicle drivers on intersection 
approaches, which may be why they also move faster through intersections.  

 

Table 1.  Summary Statistics of Variables Inferred (n = 683) 

Variables Mean Median Std. Dev. Min Max 

Speed 37.727 40.5 11.008 3.393 72 

Motorcycle 0.007 0 0.085 

0 1 

Other 0.075 0 0.263 

Car 0.521 1 0.500 

Truck 0.078 0 0.268 

SUV/CUV 0.187 0 0.391 

Van/Minivan 0.132 0 0.338 

light_state_green 0.876 1 0.330 

lane_1 0.589 1 0.492 

Note: Car class includes Convertibles, Coupes, Sedans, and Hatchbacks. 
 
 
 
 
 
 
 
 



Table 2. Results of OLS Regression Model to Predict Y = Speed (in km/hr) 

Variables  Coef. Std. Err. Std. Coef. T Stat. P-value 

Const 20.255 1.138   17.80 0.000 

Motorcycle 4.122 3.638 1.733 1.13 0.258 

Other 4.401 1.320 0.628 3.34 0.001 

Car 2.652 0.820 0.312 3.24 0.001 

Truck 1.729 1.298 0.359 1.33 0.183 

SUV/CUV 4.010 0.991 0.490 4.05 0.000 

Van/Minivan 3.342 1.098 0.476 3.04 0.002 

light_state_green 17.279 1.092 1.634 15.83 0.000 

lane_1 -1.229 0.738 -2.021 -1.67 0.096 

Sample Size 
R-squared 

Adj. R-squared 
Dep. Variable 

Standard Error (eY) 

683 vehicles 
0.277  
0.269 

 Y= Speed (estimated in km/hr) 
+/- 9.41 km/hr 
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