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ABSTRACT 35 

This paper studies the frequency of traffic crashes at intersections across Texas by employing zero-36 

inflated negative binomial (ZINB) models using the Maximum Likelihood Estimation (MLE) method, 37 
and various tree-based machine learning (ML) methods, namely Random Forests (RF), Extreme Gradient 38 

Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Bayesian Additive Regression 39 

Trees (BART) to predict the frequency of crashes at intersections. Official records of traffic crashes from 40 

2010 to 2019 were used in addition to the roadway inventory database and other data sources to explore 41 
more than 700,000 intersections. Using R-square and Root Mean Square Error as metrics, results 42 

indicated that RF had the best model performance in predicting crash frequency. Resampling the data led 43 

to better prediction performances for all the models and was useful in dealing with highly imbalanced 44 
crash data. Sensitivity analysis showed that the effects of several predictors have different directions 45 

across different ML models. 46 
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 2 

BACKGROUND  1 

Traffic crashes are very expensive- they cost the society numerous human lives. Motor vehicle crashes are 2 

one of the leading killers in the U.S, with over 100 deaths every day (National Center for Statistics and 3 

Analysis 2017).  In 2015, more than 2.5M Americans were taken to emergency departments due to 4 

injuries sustained in a motor vehicle crash (CDC 2018). Economically speaking, in 2017, the cost of 5 
medical care, loss of productivity, loss of lives, etc. - all sum up to more than $75 billion in the U.S (CDC 6 

2018). Although there is a significant amount of work predicting motor vehicle crashes, there is still room 7 

for further research in order to gain a better understanding of pre-crash conditions as well as return a more 8 
accurate prediction. Those are crucial for pro-active road-safety management. 9 

Existing literature on crash frequency prediction modeling typically adopted econometric modeling 10 
approaches (Lord and Mannering 2010; Yasmin and Eluru 2018; Wang et al. 2018). Dionne et al. (1995) 11 

and Jovanis and Chang (1986) argued in favor of the Poisson regression model in their study relating 12 

exposure variables to crash counts. In an attempt to develop crash prediction modeling for Italy, Caliendo, 13 
Guida, and Parisi (2007) investigated the comparative suitability of the Poisson, Negative Binomial, and 14 

Negative Multinomial distributions. They found that when there was over-dispersion in the crash data, the 15 

Poisson model would have weaker predictive power than the negative binomial model. Another problem 16 

with crash data is the presence of a lot of zeroes in the dataset, where the zeroes indicate the locations in 17 
which no crashes occurred. Studies found that due to unobserved heterogeneity and the presence of excess 18 

zeros, the ZINB model performed better than the regular negative binomial model (Greene 2007; Dong et 19 

al. 2014). Nonetheless, these econometric models often fail to make accurate predictions when working 20 
with complex and highly nonlinear motor vehicle crash data (Karlaftis and Vlahogianni 2011). To deal 21 

with the limitations of statistical models, several ML techniques, including decision tree-based models, 22 

Artificial Neural Network (ANN), Support Vector Machine, and deep learning models, have been applied 23 

to various traffic crash prediction models (Chong, Abraham, and Paprzycki 2005; Cho et al. 2014). That 24 
is because ML models do not rely heavily upon certain types of underlying assumptions when examining 25 

the relationships between the dependent variable and the contributing factors (Dong et al. 2018; Rahman 26 

et al. 2019). Among many ML techniques, tree-based models are being widely used in traffic safety 27 
literature because of their capability to identify the complex pattern of crash likelihood and their 28 

interpretability in explaining the relationship between target variables and the predictor variables (Chang 29 

and Chen 2005; Rahman, Kockelman, and Perrine 2022; Zuniga-Garcia, Perrine, and Kockelman 2022). 30 
In another study, Liu, Chen, and Yang (2008) compared the prediction accuracy of the negative binomial 31 

regression model with ANN in crash frequency prediction and found that ANN offers higher accuracy 32 

relative to the negative binomial model. Dong et al. (2018) developed a deep learning model with a 33 

multivariate negative binomial regression layer and concluded that the model provides better traffic crash 34 
prediction across different levels of injury severity. 35 

 36 

To address the heterogeneity of the crash data, some studies applied data clustering methods prior to 37 
applying ML models for crash prediction and examined the effectiveness of clustering treatment for most 38 

cases (de Oña et al. 2013; Eluru et al. 2012; Kaplan and Prato, 2013; Zhao, Iranitalab, and Khattak 2019). 39 

Many previous studies used accuracy or a loss function optimized for accuracy as the validation tool to 40 
measure the performance of the crash prediction model (Abdelwahab and Abdel-Aty 2001; Yu and 41 

Abdel-Aty 2013; Kingma and Ba 2017; Zheng et al. 2019). The problem with using prediction accuracy 42 

as the only metric is that it can be misleading due to the highly imbalanced traffic crash data (Rahim and 43 

Hassan 2021; Guo et al. 2008). Accuracy puts higher weight on the common class in an imbalanced 44 
dataset which leads to poor performance for rare classes like fatal crashes. A number of recent studies 45 

include precision and recall metrics to deal with the imbalanced data problem which penalizes the model 46 

for discounting the rare classes (Elamrani Abou Elassad, Mousannif, and Al Moatassime 2020; Fiorentini 47 
and Losa 2020). A high precision and recall value for a class implies the model made good classification 48 

predictions, whereas a low value implies poor classification predictions. 49 

 50 
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In the traffic safety literature, prediction accuracy was not the main focus of the statistical models; the 1 
main focus was to use the models to investigate the contributing factors of crash events and different 2 

levels of crash severity (Iranitalab and Khattak 2017; Rahim and Hassan 2021). The prediction 3 

performance was used primarily for validation purposes in statistical models. On the other hand, ML 4 

models are mostly employed as prediction tools in the traffic safety literature with higher accuracy but 5 
less interpretability than statistical models.  6 

 7 

In this era of ML and deep learning, many cutting-edge techniques are still underexplored in the study of 8 
motor vehicle crashes. Moreover, few studies considered land-use and demographic variables in 9 

predicting crash frequency. Most importantly, the majority of the crash prediction literature focused on 10 

road segments, whereas crashes occurring at intersections received relatively little attention (Zuniga-11 
Garcia, Perrine, and Kockelman 2022). That said, a significant proportion of motor vehicle crashes 12 

occurred at intersections. Among the 5.63M crashes recorded on public roads across the state of Texas 13 

from 2010 to 2019, approximately 20% of them occurred at intersections. Given intersections generally 14 

have more complex geometry, they are very important from a traffic safety perspective. In light of the gap 15 
in literature, this paper aims to contribute to the study of motor vehicle crashes by devising an innovative 16 

approach to predicting crash occurrence at intersections in Texas, as well as examining the contributing 17 

factors through comparing the predictions of various econometric and ML methods. Since over 70% of 18 
the intersections had 0 crashes recorded, this paper used a ZINB model estimated by MLE. A series of 19 

tree-based ML methods, namely RF, XGBoost, LightGBM, and BART, were used to predict the 20 

frequency of crashes at intersections. To handle the highly imbalanced crash data, the dataset has been 21 
resampled by implementing the ovun.sample function of the ROSE package in R, which is a “bootstrap-22 

based technique that helps the task of binary classification in the presence of rare classes”. The empirical 23 

results identify the key predictor variables for motor vehicle crashes. They suggest vital policy 24 
implications and hold promise for a safer transportation system nationwide. 25 

DATA 26 

Crash records from 2010 to 2019 were acquired from the Texas Department of Transportation (TxDOT) 27 
Crash Records Information System or “CRIS” (C.R.I.S. 2020). The CRIS system collects crash reports 28 

occurring on public roadways across all 254 Texas counties, as recorded by the police. To appreciate 29 

network-level design and use information, this paper also acquired data from the TxDOT Roadway 30 

Inventory database. 31 

The CRIS crash records were spatially matched with local land use, several census-tract level variables 32 

including population, employment, median household income, median age (Khattak et al. 2002), and 33 

precipitation, i.e., snow and rain (Khattak, Kantor, and Council 1998), as well as other details (like 34 
distances to the nearest hospital or school, and transit stop density). Specifically, the crash records were 35 

spatially matched to the nearest census tract centroid. The census tract-level variables were obtained from 36 

the American Community Survey dataset (ACS 2020). The 2015-2019 ACS 5-year estimates were used 37 
in the analysis. This paper also used annual rainfall data (1981 to 2010) from the Texas Water 38 

Development Board (2014) to obtain county-level average yearly precipitation. 39 



 4 

 1 

Figure 1: Crash counts per Texas intersection in 2010-2019 (n = 707,161 intersections) 2 

Total crash counts for each Texas intersection over the recent 10-year period were obtained. Among all 3 
intersections, 522,933 (74%) had 0 crashes recorded over the 10-year period, 19.7% had 1 to 10 crashes, 4 

2.9% had 11 to 20 crashes, and fewer than 4% had 21 or more crashes. The mean crash count was 3.18 5 

per intersection. Figure 1 illustrates the distribution of the crash counts per intersection, and Table 1 6 

provides summary statistics of the variables at the intersection and census-tract levels. 7 

 8 

Table 1: Summary Statistics for Intersection Crash Count Model Variables 9 

Variable Mean Std. Dev Min Median Max 

Total police-recorded crashes from 2010 to 2019 3.18 15.62 0 0 996 

Length of sidewalk within 150 ft of intersection 

centroid 
10.81 63.72 0 0 1092 

Number of lanes major approach1 2.23 0.72 1 2 8 

Number of lanes minor approach 2.03 0.25 0 2 8 

Presence of median on the major approach 0.014 0.12 0 0 1 

Presence of median on the minor approach 0.0021     0.046 0 0 1 

Intersections located on the TxDOT system 0.16 2.14 0 0 1 

Median width major approach (ft) 0.56 7.70 0 0 519 

Median width minor approach (ft) 0.085 3.35 0 0 519 

Lane width major approach (ft) 10.5 2.11 0 10 49 

Lane width minor approach (ft) 9.85 1.26 0 10 49 

Shoulder width major approach (ft) 0.72 2.34 0 0 38 

Shoulder width minor approach (ft) 0.065 0.70 0 0 32 

Annual average daily traffic (AADT) major 

approach 
1,141 3,208 0 188 142,733 

                                                                    
1 The vast majority of the intersections have 2 lanes at the major approach. 2-lane approach constitute 

89.1% of the intersections, followed by 4-lane (8.7%), 3-lane (0.6%), and 1-lane (0.1%). 
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Annual average daily traffic (AADT) minor 

approach 

221 607 0 136 62,054 

Percentage of truck in the major approach 4.85 5.43 0 3.2 95.8 

Percentage of truck in the minor approach 3.44 2.25 0 3.2 93.3 

Walk-miles traveled per area2 326 454 0 155 15,339 

Walk-miles traveled per capita 0.14     0.035 0.094 0.13 0.40 

Walk-miles traveled 772 484 0 675 4,443 

Speed limit major approach (mph) 57.02 6.50 10 58.88 85 

Speed limit minor approach (mph) 58.54 3.03 10 58.88 85 

Local major approach 0.67 0.47 0 1 1 

Local minor approach 0.93 0.25 0 1 1 

Collector major approach 0.18 0.38 0 0 1 

Collector minor approach 0.052 0.22 0 0 1 

Arterial major approach 0.14 0.12 0 0 1 

Arterial minor approach 0.015 0.12 0 0 1 

Unknown major approach 0.0067     0.082 0 0 1 

Unknown minor approach 0.00090     0.030 0 0 1 

Rural (pop: <5,000) 0.27 0.44 0 0 1 

Small urban (pop: 5,000-49,999) 0.12 0.32 0 0 1 

Urbanized (pop: 50,000-199,999) 0.11 0.31 0 0 1 

Large urbanized (pop: 200,000+) 0.50 0.50 0 0 1 

Signalized intersection3 0.02 0.15 0 0 1 

Number of approaches arriving in the intersection 3.19 0.68 0 3 5 

Distance to nearest school (miles) 1.41 2.28 0 0.55 18.64 

Distance to nearest hospital (miles) 5.10 5.16 0.017 2.83 18.64 

Transit presence within 0.25 miles of intersection 

centroid 
0.021 0.14 0 0 1 

Count of transit stops within 0.25 miles of 

intersection centroid 

0.067 0.62 0 0 26 

Population density (per acre) 3.51 3.92 0 2.18 96 

Job density (per acre)4 2.71 3.07 0 1.62 65.66 

Median income (in USD)5 32,370 13,792 2,499 29,025 124,355 

                                                                    
2 Walk-miles traveled was obtained via responses to the 2016/2017 National Household Travel Survey. 
3 Signalized intersections constitute merely 2.2% of the intersections.  
4 Population and employment densities were calculated by dividing the total population (or jobs) by the 

areas (in acres) of each census tract, using the 2015-2019 ACS 5-year estimate. 
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Median age6 37.25 6.72 18.8 36.5 73.7 

Average yearly precipitation (1981 to 2010) 

(inches)7 

36.62 11.18 9.85 37 59.59 

 1 

The association between crash counts and a number of explanatory variables is illustrated in Figure 2, in 2 
particular, annual average daily traffic (AADT), signalized intersection, and number of lanes at major 3 

approach. The sum of AADTs for the major and minor approaches was computed, and the crash counts 4 

against the sum of AADTs is plotted in Figure 2a, which shows that intersections with frequent crashes 5 

tend to have higher-than-average AADTs. Figure 2b shows that most intersections with no signals had 6 
very few crashes. Nonetheless, a high proportion of signalized intersections had relatively high numbers 7 

of crashes. Specifically, about 70% and 40% of signalized intersections had more than 20 crashes and 50 8 

crashes from 2010 to 2019, respectively. Figure 2c illustrates that with the increase of number of lanes 9 
crash counts at the intersections increase. For example, most intersections with 1 or 2 major lanes had no 10 

crashes, but about 37% of intersections with 5 to 6 major lanes had 21 or more crashes. About 40% of 11 

intersections with 7 to 8 major lanes had over 50 crashes. Figure 2 provides evidence that intersection 12 

crashes are positively correlated with AADT, signalized intersections, and number of lanes at major 13 
approaches.  14 

         15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

               24 

                                                      (a) Scatter plot for crash counts vs AADT 25 
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 30 

 31 
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 33 

 34 

                                                                                                                                                                                                                          
5 This was measured by the median household income of each census tract, using the 2015-2019 ACS 5-

year estimate. 
6 This was measured by the median age of each census tract, using the 2015-2019 ACS 5-year estimate. 
7 This was measured by the average yearly precipitation of each county, from 1981 to 2010, using the 

Texas Water Development Board precipitation data. 
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(b) Percentage of intersections by crash count range vs signalized and unsignalized intersections 1 

 2 

         (c) Percentage of intersections by crash count range vs lane count 3 

Figure 2. Crash counts by AADT, presence of traffic signal and number of lanes 4 

 5 

 6 

 7 

 8 

 9 

 10 

             11 

 12 

 13 

(c) Crashes per capita in 6-county Austin region 14 

Figure 3: High-crash intersections (a) and Census-tract level crash rates (per capita) (b & c) 15 

(a) Texas intersections where             
# crashes  100 over 10-year period 

 

(b) Crashes per capita across 5,265 Census tracts 
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This paper also provides visualization of crash counts at the census-tract level. Figure 3a locates the 1 
intersections that had more than 100 crashes over the 2010-2019 period (i.e., more than 10 crashes per 2 

year on average). Such intersections are represented by the red dots in the map. Figure 3b illustrates the 3 

number of crashes per capita for each census tract. Crashes per capita were computed by dividing the total 4 

number of crashes by the population within the census tract. The percent ranks for each value are 5 
represented by different colors. Higher percent ranks are closer to the yellow end of the color spectrum, 6 

while lower percent ranks are closer to the purple end. The yellow spots are concentrated in large cities in 7 

Texas, where the census tracts have higher population densities. That indicates that large cities are more 8 
likely to have higher average crash counts than their rural counterparts. Specifically, this suggests there is 9 

an association between population density and crash counts at the census tract level. To better capture this 10 

relationship, this paper examines the Austin metropolitan area as an example, which includes the counties 11 
of Bastrop, Burnet, Caldwell, Hays, Travis, and Williamson. Figure 3c illustrates that the more densely 12 

populated census tracts tend to have higher average crash counts, in particular Travis County and the 13 

areas along the IH-35 corridor. In the next section, statistical models were used to study the association of 14 

crash counts with the explanatory variables. 15 

 16 

REGRESSION MODEL 17 

As a baseline, ZINB models were calibrated to appreciate the effects of various explanatory variables on 18 
the total (10-year) crash counts at each of Texas’ 707,161 intersections. Since over 70% of intersections 19 

had 0 crashes recorded, this paper used a zero-inflated count model. As the standard deviation of the 20 

outcome was significantly higher than the mean, the data was over-dispersed. In light of this issue, this 21 
paper used a negative binomial model instead of a Poisson model. As a result, ZINB models were 22 

employed for regression analysis. This paper included all explanatory variables in the ZINB regression. 23 

Since the variables were measured on different scales, this paper standardized all explanatory variables to 24 

make the values comparable. First, the means were subtracted from the original values. Second, the 25 

resulting values were divided by the standard deviation to acquire the standardized values. 26 

Figure 4. Coefficient plot of ZINB model 27 

 28 
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Figure 4 presents the coefficient plot for the ZINB model. One may interpret the coefficients as follows: 1 
“For one unit change in the predictor, the difference in the logs of expected counts of the outcome 2 

variable is expected to change by the respective regression coefficient, given other predictors are held 3 

constant” (UCLA 2022). The results in Figure 4 are to a large extent consistent with Figure 2. Crash 4 

counts are positively correlated with AADT, signalized intersections, and number of lanes in the major 5 
approach. Population density also has a positive effect on traffic crashes. Regarding other road-specific 6 

attributes, presence of median on approaches and lane widths of approaches show negative effects. Walk-7 

miles traveled per capita increases crash counts, while speed limits at the approaches tend to decrease 8 
crash counts. Number of approaches arriving in the intersection has a positive effect. Other location 9 

features also show significant effects. Increasing distance to the nearest hospital reduces crash counts, 10 

while the presence of transit within 0.25 miles of the intersection centroid increases crash counts. As for 11 
census-level attributes, population density and average annual rainfall demonstrate positive effects, 12 

whereas median income and median age show negative effects. 13 

 14 

TREE-BASED ML MODELS 15 

Next, various tree-based ensemble ML models were used to predict crash occurrences at intersections 16 

across Texas, including RF, XGBoost, LightGBM, and BART. The models had 42 features in total. This 17 

paper evaluated the performance of the models in the predictions. The procedures were as follows: (1) 18 
randomly split the data into 70% training and 30% test sets; (2) fit the model on the training data and 19 

generate predictions; and (3) evaluate model performance with various metrics, namely R-square and root 20 

mean squared error (RMSE). 21 

 22 

RF 23 

A RF regression constructs decision trees for training. Depending on the size of the training set and 24 

predictions of individual decision trees, the RF algorithm determines the number of decision trees used 25 
(Greenwell and Boehmke 2020). Specifically, the decision trees are generated by “splitting each node 26 

using the best among a subset of predictors randomly chosen at that node with a different bootstrap 27 

sample of the data” (Zhao et al. 2021). The RF method computes the final prediction value based on the 28 
average prediction of individual decision trees (Liaw and Wiener 2002). For the hyperparameter tuning, 29 

the number of trees was set to 500 in the RF regression. This paper used the squared error to measure the 30 

quality of the split and considered all features when looking for the best split. 31 

 32 

XGBoost 33 

Chen and Guestrin (2016) devised the XGBoost method as a scalable ML system for gradient tree 34 

boosting. XGBoost constructs consecutive small trees with each tree correcting the net error from the 35 
previous trees (Chen and Guestrin 2016). XGBoost is trained in a forward “stage-wise” manner, aiming to 36 

minimize the sum of squared errors by tuning the parameters continuously (Li and Kockelman 2022). 37 

“The first tree is split on the most predictive feature, and then the weights are updated to ensure that the 38 
subsequent tree splits on whichever feature allows it to correctly classify the data points that were 39 

misclassified in the initial tree. The next tree will then focus on correctly classifying errors from that tree, 40 

and so on. The final prediction is the weighted sum of all individual predictions” (Zhao et al. 2021). As to 41 

hyperparameter tuning, the maximum depth of the trees was set to 6, the number of rounds for boosting 42 

was 500, and learning rate was 0.1 in the XGBoost training model. 43 

 44 

LightGBM 45 

The LightGBM method incorporates gradient-based one-side sampling (GOSS) and exclusive feature 46 

bundling, and it is particularly useful for large datasets (Ke et al. 2017). The GOSS algorithm keeps all 47 



 10 

the instances with larger gradients while randomly dropping those instances with smaller gradients (Li 1 
and Kockelman 2022). LightGBM speeds up the training process, thus reducing the computational time 2 

significantly. In the LightGBM model, the leaves per tree was set to 6, number of threads was 2, number 3 

of boosting iterations was 1000, and learning rate was 0.1. 4 

 5 

BART 6 

BART is a Bayesian non-parametric approach that fits a model using an influential prior distribution 7 

(Chipman, George, and McCulloch 2010). BART is a Bayesian “sum-of-tree” model in which “each tree 8 
is constrained by a regularization prior to be a weak learner” (Chipman, George, and McCulloch 2010). It 9 

performs iterative fitting and inference through conducting the back-fitting Monte Carlo Markov Chain 10 

that generates samples from a posterior. BART is robust to hyperparameter settings and addresses 11 
uncertainties with a Bayesian approach (Zhao et al. 2021). However, the method requires a lot of memory 12 

and time for computation. The number of trees was set to 100 for the model’s training. 13 

 14 

COMPARISION OF MODEL PERFORMANCE 15 

Balanced and Unbalanced Data 16 

In the crash dataset, there were 522,933 (74%) zero-count intersections and 184,228 (26%) non-zero-17 

count intersections. That made the data highly imbalanced. To address this issue, the dataset was 18 

resampled by implementing the ovun.sample function of the ROSE package in R, which is a “bootstrap-19 

based technique that helps the task of binary classification in the presence of rare classes” (Lunardon, 20 
Menardi, and Torelli 2014). ovun.sample generated synthetic balanced samples through a combination of 21 

randomly oversampling the minority class (intersections with non-zero crashes) and undersampling the 22 

majority class (intersections with zero crashes). In particular, it used bootstrapping to draw synthetic 23 
samples from the feature space neighborhood around the minority class to create new rows of new data 24 

for the minority class. It also randomly selected a set of majority class observations and removed those 25 

observations from the dataset (He and Garcia 2009). After resampling, the numbers of zero-crash and 26 

non-zero crash intersections were approximately equal (zero crash: 353,813 and non-zero crash: 353,113), 27 

thus the balance of the dataset was adjusted. The modified sample was denoted as balanced data. 28 

 29 

Signalized vs Unsignalized Intersections 30 

Signalized intersections and AADTs exerted disproportionately high weights on the model predictions (as 31 

shown in Figure 5). As a result, other features were not well accounted for in the predictions. To deal with 32 

this problem, this paper subsetted the data into signalized intersections and unsignalized intersections. It 33 
also only included the intersections where the sum of AADTs of the incoming links exceeded 500 (i.e., 34 

excluding the low-volume sites). After subsetting the data, this paper found that there were 15,222 35 

signalized intersections and 235,822 unsignalized intersections. Among the unsignalized intersections, 36 

121,983 had zero crashes and 113,839 had non-zero crashes. 37 

 38 

R-square and RMSE 39 

Table 2 presents the summary of the model performances, in terms of R-square and RMSE. R-square and 40 
RMSE are commonly used metrics to evaluate model fit and performances for ML models (Li and 41 

Kockelman 2022). Using the original (or imbalanced) data, we found that the R-squares of the ML models 42 

were not particularly high. The ZINB model produced the worst predictions, as it yielded the lowest R-43 
square and highest RMSE among all models. Concerning the four ML models, RF regression resulted in 44 

the highest R-square (0.534) and BART had the lowest R-square (0.508). The RMSE ranged from 10.64 45 

to 19.71. LightGBM yielded the lowest RMSE, followed by RF. The RMSEs indicated unsatisfactory 46 
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predictions of the models. There were two possible reasons for this issue. First, the data contained a high 1 
proportion of zero-crash intersections. Second, there were a number of extreme values. For example, the 2 

maximum number of crashes was 996. Model predictions are likely to be affected by the extreme values. 3 

Resampling the data led to better predictions for some of the models. The R-squares increased across the 4 

models, with RF reaching a R-square of above 0.8. RMSEs, on the other hand, only showed improvement 5 
for three models. RMSEs for the RF, XGBoost, and ZINB models decreased by 2.07, 0.19, and 7.36, 6 

respectively. It is evident that after resampling, RF’s RMSE saw the most significant improvement. 7 

Nonetheless, the RMSEs for LightGBM and BART increased by 1.92 and 7.82, respectively, which 8 
indicated poorer predictions for the two models, especially BART. As to the computation times, ZINB 9 

was the fastest model, while BART took the longest time to compute (712 minutes), followed by RF (508 10 

minutes). 11 

 12 

Table 2: Comparison of model performance: Imbalanced vs balanced data 13 

 Imbalanced data 

(N=707,161) 

Balanced data 

(N=706,926) 

Comp. time 

(min) 

 R-square RMSE R-square RMSE  

ZINB -1.442 59.03 -5.979 51.67 14 

RF 0.534 10.66 0.832 8.59 508 

XGBoost 0.527 10.69 0.753 10.50 84 

LightGBM 0.531 10.64 0.647 12.56 19 

BART 0.508 19.71 0.602 27.53 712 

        14 

Table 3 compares the performances of the ML models between signalized and unsignalized intersections. 15 

It shows that the R-squares are comparable across the two groups, but the RMSEs are much higher for 16 
signalized intersections. This is partly due to the higher variation of crash counts, in particular the higher 17 

number of extreme values, at signalized intersections. Unsignalized intersections had many more zero 18 

crash counts, thus yielding lower RMSEs that are comparable to Table 2. Considering model 19 

performances, one can see that the RF model yielded the best model performance overall. 20 

 21 

Table 3: Comparison of model performance: Signalized vs Unsignalized intersections 22 

 Signalized 

(N=15,222) 

Unsignalized 

(N=235,822) 

 R-square RMSE R-square RMSE 

RF 0.245 63.12 0.287 10.47 

XGBoost 0.243 63.66 0.241 10.67 

LightGBM 0.261 62.87 0.232 10.74 

BART 0.203 83.69 0.194 14.27 

 23 

Feature Importance 24 

Given that RF had the best model predictions in the analysis, this paper is interested in feature 25 

importance, that is, the relative importance each feature has on the predictions of the RF model 26 
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(Casalicchio, Molnar, and Bischl 2018). This paper calculates the model-specific feature importance 1 
scores for RF. The importance scores are computed through permuting out-of-bag (OOB) data to obtain 2 

validation-set errors for individual decision trees8. Each predictor variable is then randomly permuted in 3 

the OOB data and the error is calculated again. The difference between the two errors is obtained for the 4 

OOB data and subsequently averaged over all trees in the forest (Greenwell and Boehmke 2020). If a 5 
predictor X is important, then a change in X’s value in the OOB data will contribute to a larger increase in 6 
the validation error compared to other predictors (van der Laan 2006).  7 

This paper employed the vip package in R to calculate feature importance, and it evaluated the top 20 8 

features in terms of importance (Greenwell and Boehmke 2020). It scaled all measures of importance, 9 

such that the top feature had a maximum value of 100. Figures 5a and 5b illustrate the feature importance 10 
of individual features using the imbalanced and balanced data, respectively. The figures show that 11 

signalized intersections are the top feature, followed by AADTs, number of lanes of the approaches, and 12 

speed limit of the minor approach. Other important features included distance to the nearest hospital, 13 
distance to the nearest school, arterial minor approach, and walk-miles traveled. A number of census-tract 14 

level attributes were also important, including population density and median income. It is noteworthy 15 

that signalized intersections, and to some extent AADT at minor approach and AADT at major approach, 16 

had exceptionally high feature importance compared to other features. The three features exerted 17 
disproportionately high weights on the RF model predictions. 18 

As explained in previous section, the data was subsetted to focus on features other than signalized 19 
intersections and AADTs. Analyzing only the high-volume intersections where the sum of AADTs 20 

exceeded 500, Figures 6a and 6b illustrate the feature importance for signalized and unsignalized 21 

intersections, respectively. They found that total walk-miles traveled, distance to the nearest school, 22 
distance to the nearest hospital, population density, and employment density were the most important 23 

features to the model predictions, although the five features were ranked differently between signalized 24 

and unsignalized intersections. 25 

 26 

                                                                    
8 When conducting bootstrap aggregating, two datasets are generated, namely the bootstrap sample and 

OOB set. While bootstrap sample is selected to be “in-the-bag”, OOB set is all data that are not selected in the 
sampling process (James et al. 2013). 
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(a) Feature importance for unbalanced data  1 

(b) Feature importance for balanced data 2 

Figure 5: Feature importance for the RF models 3 
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(a) Signalized intersections 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

(b) Unsignalized intersections 27 

Figure 6: Feature importance for the RF models for signalized and unsignalized intersections with sum 28 

(AADTs) ≥ 500 29 

 30 

SENSITIVITY ANALYSIS OF CRASH PREDICTION 31 

While regression and ML models excel at capturing relationships between features and outcome variables, 32 

the results may not be easy to interpret particularly for ML models. Specifically, one may find it difficult 33 
to quantify the substantive effects of each feature. Following Li and Kockelman (2022), this paper 34 

employed a sensitivity analysis that captured the contribution each variable had on the model’s 35 

predictions. Let X be the set of features. The procedures of evaluating the sensitivity of variable Xi were as 36 

follows: (1) train the model on X and compute y as the prediction vector; (2) generate a new set X* where 37 

a transformation is performed on variable Xi; (3) generate prediction on X* and define y∗ as the prediction 38 
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vector, and (4) compute the percentage change in the prediction mean, denoted as 
𝑦∗̅̅̅̅ −�̅�

�̅�
∗ 100% (Li and 1 

Kockelman 2022). Following Zuniga-Garcia, Perrine, and Kockelman (2022), the transformation was as 2 
follows: (1) increase one standard deviation for continuous features; (2) binary change (0 to 1; or 1 to 0) 3 

for dichotomous features. Essentially, one standard deviation or binary change was implemented on each 4 

observation (Rahman, Kockelman, and Perrine 2022). The new prediction was computed using the 5 
modified variables, and the difference between the mean of new predictions and original predictions 6 

represented the contribution of each feature (Zuniga-Garcia, Perrine, and Kockelman 2022). 7 

This paper illustrates the sensitivities of each Xi by computing percentage changes in the outcome after 8 

performing transformation on each Xi. Specifically, we computed the percentage changes in the outcome 9 
variable, averaged across all 707,161 intersections, after one standard deviation change or binary change 10 

in each Xi. The higher the percentage changes, the higher contribution of a given variable on the model’s 11 

predictions. 12 

Figure 7 illustrates the sensitivities for the ZINB models and ML models for imbalanced and balanced 13 

data, respectively. One can see that the effects of several variables show different directions across 14 

different models. Considering the more important features, number of lanes at the minor approach, speed 15 

limits at the major and minor approaches, and distance to the nearest hospital show different directions in 16 
Figures 7a and 7b. This was possibly due to the fact that different ML models interpreted the significance 17 

of the features differently (Rahman, Kockelman, and Perrine 2022). Therefore, it is vital that one chooses 18 

the best performing model when one evaluates the metrics and examines feature importance with the 19 
optimum model. Since the ZINB model offers significance test of the predictor variables compared to ML 20 

models, this paper placed more weight on the results of the ZINB model when drawing inferences. 21 

For the ZINB model, road types (local, collector, and arterial approaches) increased the outcome by a 22 
large percentage. In particular, arterial major approach had the most significant impact on the total 23 

number of crashes. A binary change on arterial major approach could lead to a 214% increase in crash 24 

occurrences per intersection. The percentage changes for land use characteristics were smaller in the ML 25 

models. For example, a binary change on arterial major approach resulted in less than a 30% increase in 26 
crash counts for all ML models. For ZINB models, intersections in rural areas, small urban, and urbanized 27 

areas decreased crash counts by 137%, 59%, and 24%, respectively, compared to large urban areas. In the 28 

ML models, the percentage changes pointed to different directions for different urban-rural classifications. 29 
For XGBoost and BART models, rural areas decreased crash counts while for the RF model, rural areas 30 

increased crash occurrences. Small urban and urbanized areas increased crash occurrences for most ML 31 

models. This contrasted with the ZINB results. 32 

Concerning road design variables, the number of lanes and AADTs at the major and minor approaches 33 

had a significant impact on crash occurrence in the ZINB models. In the ZINB model, one standard 34 

deviation increase in the number of lanes at major approach led to a 59% increase in crash counts. In the 35 

RF model, the percentage change decreased to 42%. In the ZINB model, one standard deviation increase 36 
in AADTs at major and minor approaches contributed to about a 144% and 52% increase in crash 37 

occurrences, respectively. In the ML models, AADTs at major and minor approaches also showed 38 

increases in crash counts. The percentage increases ranged from 35% to 108% on imbalanced data, and 39 
from 42% to 92% on balanced data. Signalized intersections also contributed to a large increase in the 40 

outcome for both ZINB and ML models. A binary change on signalized intersections contributed to 300% 41 

and 163% increases in crash counts in the RF model on imbalanced and balanced data, respectively. As 42 

for census-tract level attributes, one standard deviation increase in population density, employment 43 
density, and precipitation increased crash counts by 33%, 20%, and 6%, respectively, while one standard 44 

deviation increase in median income and median age reduced crash occurrence by 50% and 43%, 45 

respectively. ML models showed the same directions in terms of percentage changes. 46 
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 1 

(a) Sensitivity for covariates for imbalanced data 2 

 3 

(b) Sensitivity for covariates for balanced data 4 

Figure 7: Sensitivity analysis for covariates in predicting total crash occurrence 5 

 6 
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(a) Sensitivity for covariates for high-volume signalized intersections 1 

 2 

(b) Sensitivity for covariates for high-volume unsignalized intersections 3 

Figure 8: Sensitivity analysis of covariates in predicting total crash occurrences for high-volume (sum 4 

(AADT) ≥ 500) signalized and unsignalized intersections 5 

 6 

 7 

This paper compared the sensitivity analysis results of the ML models for signalized and unsignalized 8 

intersections in Figures 8a and 8b, respectively. Comparing the two figures, most features showed similar 9 
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directions in percentage changes. Focusing on the most important features, we found that the percentage 1 
changes for those variables were mostly consistent across the ML models. Consider the top five features. 2 

When one standard deviation was increased to total walk-miles traveled, distance to the nearest school, 3 

population density, and employment density one at a time, this paper found positive percentage changes 4 

in crash occurrences for all models. The only exception was distance to the nearest hospital. Among 5 
signalized intersections, all models showed positive percentage changes except BART, whereas among 6 

unsignalized intersections, all models demonstrated negative percentage changes except RF. It is 7 

noteworthy that RF yielded relatively large percentage changes for the top five features. 8 

 9 

CONCLUSION 10 

This study presented a comparison between five different models- one econometric and four ML models- 11 
to explore the opportunity for ML models in predicting the motor-vehicle crash frequency and injury 12 

counts at the intersections across Texas. R-square and RMSE metrics were used to evaluate the model fit 13 

and compare the model performances. Resampling of the data led to better prediction performances of all 14 

the models tested here and hence, the final comparison is made based on their performances on the 15 
balanced data. The ZINB model was found to be the least accurate model in terms of both R-square (-16 

5.979) and RMSE (51.67). All four ML models provided much higher prediction accuracy than the ZINB 17 

model. The RF model offered the highest prediction accuracy among the ML models with R-square value 18 
of 0.832 and RMSE value of 8.59 for the balanced data. BART model had the lowest prediction accuracy 19 

among the ML models with R-square 0.602 and RMSE 27.53 followed by LightGBM with R-square 20 

0.647 and RMSE 12.56. Though resampling increased the prediction accuracy for all the models, RF 21 
model saw the most significant improvement. 22 

Employing the ML models to investigate the contributing factors of crash occurrence, this study found 23 

that signalized intersections and AADT both at minor and major approaches exerted disproportionately 24 
high weights on the model predictions. To deal with the problem, this paper subsetted the data into 25 

signalized intersections and unsignalized intersections and considered only the intersections where the 26 

sum of AADTs of the incoming links exceeded 500. Both for signalized and unsignalized intersections, 27 
RF model provided the highest accuracy in terms of both R-square (0.245 and 0.287) and RMSE (63.12 28 

and 10.47) values. Analysis of the relative feature importance of the RF model for high-volume 29 

intersections (AADT > 500) showed that total walk-miles traveled, distance to the nearest school, 30 
distance to the nearest hospital, population density and employment density were the most important 31 

features to predict crash occurrence. Other important features included the number of lanes of the 32 

approaches, speed limit of the minor approach, arterial minor approach, and median income of the census 33 
tract.  34 

Besides, the study carried out a sensitivity analysis to investigate traffic crash contributing factors by 35 

implementing one standard deviation increase (continuous features) and binary change (dichotomous 36 
features) for each observation. Sensitivity analysis showed that the effects of several variables have 37 

different directions across different models making interpreting their contribution in predicting crash 38 

occurrences difficult. Since the ZINB model offers significance test of the predictor variables compared 39 
to ML models, this paper placed more weight on the results of the ZINB model when drawing inferences. 40 

The ZINB model showed that road types of the approaches (local, collector, and arterial approaches) 41 

increase crash frequency by a large percentage (214%) compared to the ML models. On the other hand, a 42 

binary change on the arterial major approach resulted in less than a 30% increase in crash counts for all 43 
ML models. For ZINB models, intersections in rural areas, small urban, and urbanized areas decreased 44 

crash counts by 137%, 59%, and 24%, respectively, compared to large urban areas. The percentage 45 

changes for different urban-rural classifications showed different directions in the ML models. For 46 
XGBoost and BART models, rural areas decreased crash counts while for the RF model, rural areas 47 

increased crash occurrences. This made interpreting the influence of the predictors difficult and unreliable 48 
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for the ML models. Among the road design variables, one standard deviation increase in the number of 1 
lanes and AADTs at the major and minor approaches significantly increases crash count in the ZINB 2 

model. In the ML models, an increase of AADTs also increased crash count, but an increase in the 3 

number of lanes led to a decrease in crash count, contrasting the findings from ZINB model. Signalized 4 

intersections had been found to increase the crash count both in the ZINB and ML models. Among the 5 
census-tract level predictors, an increase in population density, employment density, and precipitation 6 

increased crash counts whereas the increase in median income and median age reduced crash occurrences. 7 
Both ZINB and ML models showed similar directions for the census-tract level variables. 8 

Summing up, this paper concurs with other similar studies (Iranitalab and Khattak 2017; Rahim and 9 

Hassan 2021) upon the fact that ML models are better at predicting crash occurrences whereas statistical 10 
models are better at investigating the contributing factors of a crash event. The lack of test of significance 11 

and fluctuations of sensitivity of the predictor variables across models make the result ambiguous and 12 

unreliable. Different settings of the ML models may provide different results and change the drawn 13 
inferences. Traffic and transportation agencies can use ML models in predicting a crash event with higher 14 

accuracy, but care should be taken while investigating pre-crash conditions and influencing factors using 15 
ML models. 16 
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