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ABSTRACT 
Shared autonomous vehicles (SAVs) are predicted to become a common mode and will hasten 
a transition to a cleaner and sustainable utilization of energy. Using an agent-based model, 
POLARIS, this study explores the impact of SAV operation on the system in the multicentric 
Dallas-Fort Worth region. Multiple simultaneous geofences are considered under two scenarios 
– one consisting of four counties and another with four denser cities (that form a subset of the 
counties) – to restrict SAV movements within these predefined spatial bounds. Four fixed fleet 
sizes with and without dynamic ride-sharing (DRS) guided this study. Up to 1% reduction in 
system VMT was observed in the geofence scenario with respect to the no fence baseline 
scenario with policy enforced on only 5% of all travel. The proportion of unoccupied miles in 
SAV VMT increased in larger fleets by 5%. SAV idle time increased by 7 percent points with 
the geofences, with wait times reducing considerably (to under 5 min) in both scenarios. The 
balance between fleet operation efficiency (i.e., low percent empty VMT, high average 
occupancy) and passenger satisfaction (i.e., low wait time, low detour times with DRS) is key, 
as the latter will most likely take centre stage and can impact the former. 
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INTRODUCTION 
Legal changes are enabling more use of self-driving or “autonomous” vehicles (AVs) on public 
roads, with North America accounting for the highest share in planned automated vehicle 
production of more than 45% in the global market in 2021 (Grand View Research, 2020). Long-
term AV technology should boast several advantages over conventional vehicles, including 
80%+ fewer crash costs, lower travel costs for SAV users (who may wish to avoid vehicle 
ownership] and for former drivers, who can make better use of their travel time), and potentially 
lower emissions and energy demand, at least per vehicle-mile travelled (VMT) (Kockelman et 
al., 2016; Gurumurthy et al., 2021; Fagnant et al., 2015; Lee and Kockelman 2022). 
 
The advent of AV technologies can enhance the potential benefits of shared mobility systems 
such as current-day transportation network companies (TNCs) through the consolidation of 
both car-sharing (e.g., Zipcar, car2go) and ride-sharing (Uber, Lyft) into an integrated 
commodity of shared autonomous vehicles (SAVs) (Golbabaei et al., 2021).  The capability of 
SAVs to adjust to changing demand in real-time enables them to provide more flexible services 
than current conventional public transport or shared services (Stocker and Shaheen, 2017). 
Shared fleet systems have been envisioned as sustainable solutions to urban mobility 
challenges (such as car vehicle ownership, congestion, and environmental impacts). A  number 
of studies have found that SAVs have the potential to displace conventional vehicles (Fagnant 
and Kockelman, 2014; Spieser et al., 2014). In addition, AVs are expected to result in 19.6% 
energy savings, and 13.8% to 44.1% emission reductions if all other factors are equal relative 
to human-driven vehicles (Liu et al., 2017). The economic benefits of SAVs have also been 
thoroughly explored in a plethora of studies that focus on travel costs. The high anticipated 
cost of private, autonomous driving technology necessitates that taxi services, buses, and 
shared vehicles may first adopt AV technology. They are likely to be operated at substantially 
lower cost (by foregoing labor costs that constitute up to 50% of total costs), competing closely 
with private conventional cars (Bösch et al., 2018). Consequently, publicly owned SAVs could 
offer a more affordable service through subsidies and may aid in replacing a significant 
proportion of private conventional vehicles (Levin, 2017). Furthermore, SAVs could lower taxi 
fares by two-thirds and such a system could very much be cost-effective for fleet owners. An 
estimated19% return is expected based on an investment cost of US$70,000, operating cost of 
US$0.50 per mile for AVs only, and a fare of US$ 1 per person-trip mile (Fagnant and 
Kockelman., 2015). Other studies have corroborated these findings with estimated costs falling 
between US-$ 0.5 to $1 per mile (Becker et al., 2020; Bösch et al., 2018).  

Implementing such solutions effectively hinges on enforcing wide-ranging policies on the 
transportation system (like special pricing strategies) and fleet operation parameters (like fleet 
sizing, and demand-responsiveness). Without these strategies, the benefits of SAVs could come 
at a huge cost of increased congestion through uncontrolled unoccupied or empty miles 
(eVMT). Levin (2017) formulated a linear program for a routing problem and found that larger 
fleets reduced waiting times since small fleets required more repositioning trips to reach 
travelers. However, these larger fleets resulted in an increase in average vehicle travel times 
due to increased congestion. Liu et al., (2017) used Austin’s TAZ travel demand predictions to 
conclude that SAVs may travel more miles than private human-driven vehicles if the SAV fare 
rate is low enough (though not necessarily lower than the cost of using a human-driven vehicle). 
They also found that SAV eVMT may compromise the benefits of AV use. Fleet operational 
strategies involving multi-seat SAVs can allow multiple travelers to share rides or pool (also 
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known as dynamic ridesharing, or DRS). Various studies have shown that DRS proves to be a 
part of the solution to rising congestion from large SAV demand by bundling travelers, 
especially if coupled with optimal routing algorithms (Fagnant and Kockelman, 2018; Bischoff 
and Maciejewski, 2016; Zhu et al., 2016). Consequently, DRS-enabled SAVs could greatly 
raise public willingness to pay for SAV services although wider uptake remains subject to 
individual preferences (Gurumurthy and Kockelman, 2020; Lavieri and Bhat, 2019; Zhang et 
al., 2015).  Congestion pricing and other related schemes can also help decision-makers to 
investigate and resolve the negative impacts of congestion by lowering system VMT (Simoni 
et al., 2019).  

SAVs could charge low fares but the possible added delays from detours and traveler pickup 
may not be desirable. Passengers sharing confined spaces with strangers may also add some 
discomfort. The sprawling nature of diffusely developed suburban neighborhoods in the U.S. 
has fostered longer travel times (on average) to the urban core (from a suburban home to a 
city’s CBD, for example). Because of these limitations, shared vehicles and rides are likely to 
serve urban trips more efficiently and are unlikely to dominate suburban and rural travel, 
especially at the current ridesourcing levels. TNCs have been limited by geofences in some 
cities to curb congestion and reduce conflicts in pick-up and drop-off zones, but the impacts of 
such policy decisions have not been fully exhausted. There is a need to rigorously evaluate the 
effects of constraining large-scale fleet operation and to examine the impact of altering the size 
of the overall service area. This study uses a large-scale agent-based model, POLARIS to 
compare how SAV fleets perform under different geofencing decisions around the multi-
centric Dallas-Fort Worth region, with and without DRS across adjacent downtowns and core 
neighborhoods, and attempts to formulate fleet size requirements for such regions. Key 
network metrics like mode shares, vehicle hours traveled (VHT), vehicle miles traveled 
(VMT), and fleet performance metrics like average vehicle occupancy (AVO), fleet and system 
VMT, and wait time distribution as a function of underlying land use form the bulk of the 
results. The remaining sections of the paper are structured as follows: the case study region 
used for analysis is detailed next, followed by an explanation of the simulation framework, and 
a description of the scenarios evaluated is presented. The results from these scenarios are 
discussed and the final section ends with conclusions. 

CASE STUDY OF THE DALLAS-FORT WORTH NETWORK 

Texas’ Dallas-Fort Worth metroplex (DFW) provides a unique opportunity owing to its multi-
centric spatial disposition. The region consists of 11 counties and houses nearly 8 million 
people. Dallas and Fort Worth, formerly separate cities, have merged due to urban sprawl, to 
encompass 30 miles of more than 150 cities and suburbs. DFW’s road and transit network input 
data files were obtained from the North Central Texas Council of Governments (NCTCOG), 
including traffic analysis zones to create the supply, and available survey data for calibration. 
These disparate data sources were aggregated into the SQLite databases using QGIS and a 
POLARIS plugin for QGIS that helped edit and refine the data resulting in consistent and 
functional network parameters across 5352 traffic analysis zones. Roadway network data from 
2018 consisted of 42,527 road links and 28,421 nodes. Overall, the region spans 9,286 sq. mi, 
with about 25 million person-trips made across the 600,000 households present in the 11 
counties. Calibration for mode shares, destination choice, activity start time and duration choice 
were all done using an automated script that sourced data from the National Household Travel 
Survey (NHTS) data for the region. Figure 1 below shows the road network along with the five 
most populated city limits highlighted. 
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Figure 1: Detailed network of the 12-county multicentric DFW region and major cities.  
  
SIMULATION FRAMEWORK  

The agent-based activity-based travel demand simulator called POLARIS (Auld et al., 2016) 
is used to simulate SAV fleet operations (Gurumurthy et al., 2020) in the Dallas-Forth Worth 
region. Agent-based models provide the advantage of modeling each individual passenger and 
vehicle with tailored behavior, and allows complex interactions, which provides an 
approximation of travel behavior in the transportation systems (Zhao and Malikopoulos, 2022). 
The framework utilizes travel demand models to simulate agents’ daily weekday activities. 
This requires the generation of synthetic populations during a model initialization stage, 
followed by calibration and network validation. The appendix contains further details on the 
three processes mentioned in building this framework. The population synthesizer module is 
based on an iterative fitting approach using household-level attributes and person control 
variables to correct the assumption of independent individual probabilities (Beckman et al., 
1996). The module creates a representative set of travelers for the region, and a series of core 
behavioral models, which are calibrated using NHTS data, are used to create the daily activities 
and travel itineraries for each agent. These itineraries are run according to a non-compete 
hazard formulation while traveler trip purposes are produced by a competing hazard 
formulation (Auld et al., 2011). Consequently, the activity and travel history for each agent is 
updated to inform the core models of each individual’s flexible travel choices in order to create 
a schedule of traveler activities as well as the necessary attributes of each activity, leveraging 
the ADAPTS model (Auld and Mohammadian, 2012). The core models informed by traveler 
choices include a nested logit mode choice model, multinomial logit destination choice model, 
and a hybrid random-utility random-regret minimization model for departure-time. A time-
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dependent dynamic traffic assignment method is then used to route individual vehicles 
according to traffic conditions while skim travel times and link-level congestion are reflected 
through a mesoscopic traffic flow model based on the link transmission model. (Auld et al., 
2019; Verbas et al., 2018). Scheduled activity start times and durations of activities are 
subjected to a conflict analyzer to avoid conflicts and competition of activities that could lead 
to travel delays. 

Travel Demand 

The region’s population was sampled at 25% and used to calibrate the travel demand for the 
region. Mode choice, destination choice, and activity timing choices constrained when and 
where travelers may choose the SAV mode.  Additionally, parameters in the mode choice 
model also imposed constraints on expected SAV fare and wait time for a given origin-
destination pair. The choice constants in each model are adjusted iteratively after each 
calibration run, based on the difference between the observed and simulated distributions of 
the respective choices.  If less of a given choice (e.g., TNC mode) is obtained from the 
simulation than in the observed distribution, the alternative constant for that choice is increased 
in the next run. Like TNCs, the SAV fare comprises a fixed cost per trip (base fare), a distance-
varying component (priced by mile), and a time-varying component (priced by minute). The 
simulation used averages of $1.00 base fare and $0.50 per mile to simplify the analyses based 
on previous studies (Bösch et al., 2018;  Fagnant and Kockelman, 2018; Richter et al., 2021). 
On calibration, only trips that satisfied all above constraints were available in the final travel 
demand and included all modes. These trips were then processed to simulate all non-SAV trips 
as fixed background traffic (i.e., having fixed origin and destination, but still responding to 
congestion when finding a route and traversing the network). On the other hand, SAV trips 
were subject to constraints imposed by the SAV module, such as vehicle availability in the 
vicinity of a trip request, geofence applied that limits SAV operation, and maximum allowable 
wait time to be served.  

SAV Operations 
 
SAV functionality in POLARIS was extended from Gurumurthy et al., (2021) and used in this 
study. SAV operations were limited within the extent of a spatial geofence and all analyses had  
SAVs operating in a realistic traffic environment with time-dependent background traffic from 
synthesized travel demand mentioned in the previous subsection. Travel demand was retrieved 
after calibration and processed to form fixed demand for simulation runs in this study. A 
centralized operator managed trip assignment for the SAV system, where the ridesharing option 
is evaluated to provide an appropriate match. Vehicle assignment followed zone-based 
architectures which matched ride requests to SAVs in the same or nearby zones (Gurumurthy 
et al., 2020). Willingness to travel is partly affected by TNC fares in the mode choice but does 
not contribute to choosing to use an SAV in the scenarios studied. Travelers who choose to 
share rides are catered for in the model through the DRS algorithm that employs a heuristic to 
manage travel delays experienced at several stages of the trip as elaborated upon in Gurumurthy 
and Kockelman (2022). Several fleet sizes of 1 SAV for every 10, 50, 100 and 200 residents in 
each spatial boundary served are considered, with and without DRS. Fleet sizing is essential to 
identify a practical size with the fewest vehicles able to serve the most person-trips possible 
while adhering to TNC-specific level of service variables.  
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Geofences 
 
The DFW region is vast and consists of several city centres, and land use and trip densities 
vary drastically from downtown areas to suburban regions. Fagnant and Kockelman, (2018) 
argued that scaling a fleet to serve increased trip demands over a geofence may generate 
economies of density in trip matching, reducing overall VMT and the share of empty VMT.  
Only trips originating and ending geographically within the enforced geofence will be served 
by SAVs. Trips outside the geofences are assumed to rely on alternative modes. The geofenced 
region restricts initial SAV operations to areas with high trip density, high population density, 
or high job density and extends out to suburban neighborhoods – which would be most suitable 
for SAV operation, in terms of both lower traveler wait times and less unoccupied SAV travel 
(as SAVs navigate between one traveler drop-off to the next traveler pick-up). The geofences 
are simultaneously allowed and are restricted to the four counties including their major suburbs 
in the metropolitan region with the highest population and consequently trip densities to reflect 
the initial expectation. The four chosen geofence boundaries are that of: Dallas County 
comprising of the Cities of Dallas, Garland, and Irving; Tarrant County comprises of the Cities 
of Fort Worth and Arlington; Denton County has City of Denton, and, finally, Collin County 
contains City of Plano. Table 1 shows areas of different geofences while Figure 2 shows the 
extent of the geofence service areas. 

Table 1: Areas of geofences 
 

Geofence boundary Area (sq miles) 
Total Area 10487 
City of Dallas  347 
City of Fort Worth  282 
City of Denton 172 
City of Plano 250 
Dallas County 909 
Tarrant County 898 
Collin County 858 
Denton County 899 

 
 
SCENARIO VARIATIONS  
 
Two geofence scenarios were compared to a baseline no-fence situation, and each of these 
scenarios were tested with varying fleet sizes of 1 SAV for every 10, 50, 100, and 200 residents, 
with and without DRS. In each scenario, the operator distributes the vehicles depending on the 
population density of the spatial boundary simultaneously within four specified geofence 
service areas at the county and suburban levels.  Movement outside the spatial boundaries does 
not have the option to choose an SAV and occurs with alternative modes. Owing to the scarcity 
of real data on travel patterns, it becomes difficult to estimate a mode choice model for SAVs 
while taxis and ride-sourcing vehicles (which essentially operate like SAVs) are 
underrepresented in the NHTS data. Mode choice alternative specific constants were, therefore, 
scaled up to depict a 7% mode share compared to the initial 0.3% obtained from travel survey 
data. This assumption is based on previous studies that have shown that large proportions of 
the population could switch from car to AV,  leading to a decrease in the availability of 
privately owned vehicles up to 60% (Simoni et al., 2019).  
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Figure 2:   Extent of geofences 
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Table 2: Baseline Fleet performance indicators under different fleet sizes  

DRS Fleet size Avg peak 
hour 
Wait 
Time 
(minutes) 

%eVM
T 

Avg 
daily 
trip 
length 
(miles/tr
ip/day)  

Avg daily 
VMT per 
SAV 
(miles/SA
V/day) 

Avg daily 
person trips 
per SAV 

Avg % 
daily idle 
time per 
SAV 

Revenue 
Trip 
weighte
d AVO 

Revenue 
Distance 
weighted 
AVO 

Served 
trip 
density 
(persons 
per sq 
mile) 

Share of 
trips 
made by 
SAVs (%) 

YES 

1 SAV 

every 10 

persons  

3.0 10.9 6.6 33.7 1.5 95.5 1.08 1.06 105.8 5.1 

1 SAV 

every 50 

persons  

4.6 15.6 6.1 89.8 7.2 88.6 1.20 1.14 103.3 5.0 

1 SAV 

every 100 

persons 

5.7 17.7 5.8 129.2 14.1 83.7 1.28 1.19 98.7 4.9 

1 SAV 

every 200 

persons 

6.5 19.4 5.5 213.7 27.3 73.6 1.32 1.22 93.8 4.7 

NO 

1 SAV 

every 10 

persons  

2.7 11.9 7.1 34.3 1.5 95.5 

1.0 1.0 

105.7 5.1 

1 SAV 

every 50 

persons  

5.1 20.8 6.9 96.6 7.1 87.2 100.3 4.9 

1 SAV 

every 100 

persons 

6.5 23.2 6.8 135.8 13.6 82.3 93.8 4.7 

1 SAV 

every 200 

persons 

8.7 26.1 6.7 236.8 26.4 69.0 88.9 4.6 
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Table 3: Geofence fleet performance metrics for the Four suburbs scenario, DRS 

 

Geofence 
Service 
Area 

Fleet size,  

Avg peak 
hour 
Wait 
Time 
(minutes) 

%eVMT 

Avg Daily 
trip length 
(miles/trip 
/day) 

Avg daily 
VMT per 
SAV 
(miles/SAV 
/day) 

Avg daily 
person 
trips per 
SAV 

Avg % 
daily 
idle time 
per SAV 

Revenue 
trip 
weighted 
AVO 

Revenue 
Distance 
weighted 
AVO 

Served 
trip 
density 
(persons 
per sq 
mile)  

City of 

Dallas  

1 SAV 

every 10 

persons 

2.2 13.1 3.9 22.6 1.8 96.9 1.09 1.07  155.6 

1 SAV 

every 50 

persons 

3.5 25.6 3.6 56.5 8.7 92.1 1.21 1.17  153.1 

1 SAV 

every 100 

persons 

4.6 21.9 3.6 92.8 17.6 87 1.24 1.19  154.6 

1 SAV 

every 200 

persons 

4.9 23.8 3.4 163.8 32.2 77.6 1.27 1.21  140.9 

City of 

Fort 

Worth 

1 SAV 

every 10 

persons 

2.5 16.9 3.9 29 1.5 96.1 1.14 1.11  115.8 

1 SAV 

every 50 

persons 

3.7 27.9 3.6 60.9 7.5 91.9 1.24 1.19  114.7 

1 SAV 

every 100 

persons 

4.6 22.8 3.6 86.1 15.1 88.4 1.26 1.21  114.6 
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Geofence 
Service 
Area 

Fleet size,  

Avg peak 
hour 
Wait 
Time 
(minutes) 

%eVMT 

Avg Daily 
trip length 
(miles/trip 
/day) 

Avg daily 
VMT per 
SAV 
(miles/SAV 
/day) 

Avg daily 
person 
trips per 
SAV 

Avg % 
daily 
idle time 
per SAV 

Revenue 
trip 
weighted 
AVO 

Revenue 
Distance 
weighted 
AVO 

Served 
trip 
density 
(persons 
per sq 
mile)  

1 SAV 

every 200 

persons 

4.8 24.5 3.5 143 27 81 1.29 1.22  102.0 

City of 

Denton 

1 SAV 

every 10 

persons 

2.3 21.6 3.2 13.4 1.5 98.3 1.05 1.04  37.1 

1 SAV 

every 50 

persons 

2.8 25.9 2.5 36.7 7.6 95.3 1.03 1.06  37.6 

1 SAV 

every 100 

persons 

2.9 27.1 3.1 64.5 15 91.2 1.11 1.08  37.1 

1 SAV 

every 200 

persons 

3.6 29.9 3.9 124.3 26 84.2 1.17 1.12  32.2 

City of 

Plano 

1 SAV 

every 10 

persons 

2.7 21.3 3.8 12.2 0.4 98.3 1.03 1.02  17.6 

1 SAV 

every 50 

persons 

2.8 22.5 3.1 19.6 1.9 97.2 1.08 1.03  17.8 

1 SAV 

every 100 

persons 

2.8 24.5 3.7 27.7 3.9 96.3 1.03 1.03  17.6 
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Geofence 
Service 
Area 

Fleet size,  

Avg peak 
hour 
Wait 
Time 
(minutes) 

%eVMT 

Avg Daily 
trip length 
(miles/trip 
/day) 

Avg daily 
VMT per 
SAV 
(miles/SAV 
/day) 

Avg daily 
person 
trips per 
SAV 

Avg % 
daily 
idle time 
per SAV 

Revenue 
trip 
weighted 
AVO 

Revenue 
Distance 
weighted 
AVO 

Served 
trip 
density 
(persons 
per sq 
mile)  

1 SAV 

every 200 

persons 

3.8 25.2 3.1 32.6 5.2 95.3 1.03 1.02  12.0 

 

Table 4: Geofence fleet performance metrics for the Four suburbs scenario, NO-DRS 

 

Geofence 
Service 
Area 

Fleet size,  

Avg peak 
hour 
Wait 
Time 
(minutes) 

%eVMT 

Avg Daily 
trip length 
(miles/trip 

/day) 

Avg daily 
VMT per 

SAV 
(miles/SAV 

/day) 

Avg 
daily 
person 
trips per 
SAV 

Avg % 
daily 
idle time 
per SAV 

Revenue 
trip 
weighted 
AVO 

Revenue 
Distance 
weighted 
AVO 

Served 
trip 
density 
(persons 
per sq 
mile)   

City of 

Dallas  

1 SAV 

every 10 

persons 

2.0 15.9 4.2 23.7 1.8 96.7 

1 1 

 153.8  

1 SAV 

every 50 

persons 

4.1 26.8 4.2 63.3 8.7 91.1  153.1  

1 SAV 

every 100 

persons 

4.7 28.3 4.2 106.4 17.3 85.3  151.9  

1 SAV 

every 200 

persons 

5.3 30.2 4.1 192 32.5 72.7  142.4  
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Geofence 
Service 
Area 

Fleet size,  

Avg peak 
hour 
Wait 
Time 
(minutes) 

%eVMT 

Avg Daily 
trip length 
(miles/trip 

/day) 

Avg daily 
VMT per 

SAV 
(miles/SAV 

/day) 

Avg 
daily 
person 
trips per 
SAV 

Avg % 
daily 
idle time 
per SAV 

Revenue 
trip 
weighted 
AVO 

Revenue 
Distance 
weighted 
AVO 

Served 
trip 
density 
(persons 
per sq 
mile)   

City of 

Fort 

Worth 

1 SAV 

every 10 

persons 

2.7 21.5 4.3 32.2 1.5 95.6 

1 1 

 115.6  

1 SAV 

every 50 

persons 

4 29 4.3 68 7.7 91  116.4  

1 SAV 

every 100 

persons 

4.7 29.8 4.3 101.4 15.3 86.6  115.4  

1 SAV 

every 200 

persons 

4.9 31.2 4.2 163.9 27.1 78.3  102.6  

City of 

Denton 

1 SAV 

every 10 

persons 

2.4 21.8 3.4 13.5 1.5 98.3 

1 1 

 37.1  

1 SAV 

every 50 

persons 

2.7 26.6 3.3 37.2 2 95.3  36.7  

1 SAV 

every 100 

persons 

3 29 3.3 70.4 14.9 91.1  36.8  

1 SAV 

every 200 

persons 

3.5 32.9 3.3 133.6 26.9 82.7  33.3  
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Geofence 
Service 
Area 

Fleet size,  

Avg peak 
hour 
Wait 
Time 
(minutes) 

%eVMT 

Avg Daily 
trip length 
(miles/trip 

/day) 

Avg daily 
VMT per 

SAV 
(miles/SAV 

/day) 

Avg 
daily 
person 
trips per 
SAV 

Avg % 
daily 
idle time 
per SAV 

Revenue 
trip 
weighted 
AVO 

Revenue 
Distance 
weighted 
AVO 

Served 
trip 
density 
(persons 
per sq 
mile)   

City of 

Plano 

1 SAV 

every 10 

persons 

2.7 21.9 3.9 12.1 0.4 98.3 

1 1 

 17.8  

1 SAV 

every 50 

persons 

2.9 23.7 3.8 19.9 7.4 97.3  18.2  

1 SAV 

every 100 

persons 

3 25.7 3.8 28.6 3.9 96.2  18.1  

1 SAV 

every 200 

persons 

3.2 27.1 3.9 33.7 5.1 95.1  11.6  
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Table 5: Geofence fleet performance metrics for the Four county scenario, DRS 

Geofence 
Service 
Area 

Fleet size,  

Avg peak 
hour Wait 
Time 
(minutes) 

%eVMT 

Avg Daily 
trip length 
(miles/trip 

/day) 

Avg daily 
VMT per 

SAV 
(miles/SAV 

/day) 

Avg 
daily 
person 
trips per 
SAV 

Avg % 
daily 
idle time 
per SAV 

Revenue 
trip 
weighted 
AVO 

Revenue 
Distance 
weighted 
AVO 

Served 
trip 
density 
(persons 
per sq 
mile)  

Dallas 

County  

1 SAV every 

10 persons 
2.1 11 4.7 22.5 1.4 97 1.05 1.04  99.3 

1 SAV every 

50 persons 
3.17 18.3 4.4 60.5 6.9 92 1.18 1.13  98.8 

1 SAV every 

100 persons 
4.14 21.1 4.2 96.4 13.8 87.4 1.22 1.17  98.0 

1 SAV every 

200 persons 
5.05 23.4 4.1 150.4 24.6 80.2 1.26 1.19  87.3 

Tarrant 

County 

1 SAV every 

10 persons 
2.31 13.8 4.6 23.3 0.96 97 1.07 1.06  54.5 

1 SAV every 

50 persons 
3.2 20 4.3 59.4 4.8 92.4 1.18 1.14  54.5 

1 SAV every 

100 persons 
4.24 23.5 4.2 86 9.6 89 1.24 1.19  54.7 

1 SAV every 

200 persons 
4.83 25.3 4.1 110 15.7 86 1.26 1.2  44.7 

Denton 

County 

1 SAV every 

10 persons 
3.74 18.9 5 17.4 0.71 97.7 1.05 1.04  17.3 

1 SAV every 

50 persons 
4.15 20.4 4.9 31.6 3.5 95.9 1.07 1.06  17.3 

1 SAV every 

100 persons 
4.48 21.7 4.9 52.4 7.1 93.2 1.09 1.07  17.3 

1 SAV every 

200 persons 
4.38 23.5 4.9 84.5 11.9 89 1.12 1.09  14.5 
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Geofence 
Service 
Area 

Fleet size,  

Avg peak 
hour Wait 
Time 
(minutes) 

%eVMT 

Avg Daily 
trip length 
(miles/trip 

/day) 

Avg daily 
VMT per 

SAV 
(miles/SAV 

/day) 

Avg 
daily 
person 
trips per 
SAV 

Avg % 
daily 
idle time 
per SAV 

Revenue 
trip 
weighted 
AVO 

Revenue 
Distance 
weighted 
AVO 

Served 
trip 
density 
(persons 
per sq 
mile)  

Collin 

County 

1 SAV every 

10 persons 
2.8 18.4 4.2 13.2 0.54 98 1.02 1.02  16.0 

1 SAV every 

50 persons 
3.25 20.1 4.2 22.7 2.6 96.7 1.03 1.02  15.6 

1 SAV every 

100 persons 
3.52 22.1 4.2 35.9 5.2 94.8 1.04 1.03  15.7 

1 SAV every 

200 persons 
5.01 22.9 4.3 49.3 7.8 92.6 1.04 1.03  11.6 

 

 

Table 6: Geofence fleet performance metrics for the Four county scenario, NO DRS 

 

Geofence 
Service 
Area 

Fleet size,  

Avg peak 
hour Wait 
Time 
(minutes) 

%eVMT 

Avg Daily 
trip length 
(miles/trip 

/day) 

Avg daily 
VMT per 

SAV 
(miles/SAV 

/day) 

Avg daily 
person 
trips per 
SAV 

Avg % 
daily idle 
time per 
SAV 

Revenue 
trip 
weighted 
AVO 

Revenue 
Distance 
weighted 
AVO 

Served 
trip 
density 
(persons 
per sq 
mile)   

Dallas 

County 

1 SAV 

every 10 

persons 

1.9 11.7 4.9 22.7 1.4 96.9 

1 1 

 99.0  

1 SAV 

every 50 

persons 

3.7 23.9 4.9 67.2 6.9 90.9  98.1  
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Geofence 
Service 
Area 

Fleet size,  

Avg peak 
hour Wait 
Time 
(minutes) 

%eVMT 

Avg Daily 
trip length 
(miles/trip 

/day) 

Avg daily 
VMT per 

SAV 
(miles/SAV 

/day) 

Avg daily 
person 
trips per 
SAV 

Avg % 
daily idle 
time per 
SAV 

Revenue 
trip 
weighted 
AVO 

Revenue 
Distance 
weighted 
AVO 

Served 
trip 
density 
(persons 
per sq 
mile)   

1 SAV 

every 100 

persons 

4.8 27.6 4.9 107 13.8 85.7 97.7  

1 SAV 

every 200 

persons 

5.5 29.3 4.9 167.7 24.2 77.9  85.4  

Tarrant 

County 

1 SAV 

every 10 

persons 

2.3 15.4 4.9 24.2 0.96 96.7 

1 1 

 54.8  

1 SAV 

every 50 

persons 

3.5 27.1 4.9 68.8 4.8 91.2  54.8  

1 SAV 

every 100 

persons 

4.8 31.4 4.9 99.5 9.5 87.3  53.8  

1 SAV 

every 200 

persons 

5.4 32.3 4.9 126.6 15.6 83.9  43.9  

Denton 

County 

1 SAV 

every 10 

persons 

4.8 20 5.2 17.1 0.71 97.5 

1 1 

 17.6  

1 SAV 

every 50 

persons 

4.4 21.2 5.3 32.3 3.6 95.7  17.3  
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Geofence 
Service 
Area 

Fleet size,  

Avg peak 
hour Wait 
Time 
(minutes) 

%eVMT 

Avg Daily 
trip length 
(miles/trip 

/day) 

Avg daily 
VMT per 

SAV 
(miles/SAV 

/day) 

Avg daily 
person 
trips per 
SAV 

Avg % 
daily idle 
time per 
SAV 

Revenue 
trip 
weighted 
AVO 

Revenue 
Distance 
weighted 
AVO 

Served 
trip 
density 
(persons 
per sq 
mile)   

1 SAV 

every 100 

persons 

4.2 23.1 5.2 54.4 7.2 93  17.3  

1 SAV 

every 200 

persons 

5.2 25.1 5.3 85.7 11.8 88.8  14.2  

Collin 

County 

1 SAV 

every 10 

persons 

2.7 19.1 4.3 13.2 0.53 98 

1 1 

 15.8  

1 SAV 

every 50 

persons 

3.1 20.7 4.2 23.2 2.6 96.5  15.7  

1 SAV 

every 100 

persons 

3.3 23.4 4.2 36.3 5.2 94.7  15.5  

1 SAV 

every 200 

persons 

4 24.8 4.3 48 7.7 92.7  11.6  
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RESULTS 

This study simulated 25% of the DFW region’s 25 million daily person-trips and 7% SAV 
mode shares in the 11-county DFW region under fixed fleet-based DRS and non-DRS 
scenarios to better understand system performance. Varying fleet sizes using artificial SAV 
mode shares helped understand regional impacts on traveler wait time, response time, total 
VMT, empty VMT, and the fleet's average vehicle occupancy (AVO), while also varying 
geofences as shown in Table 2 to Table 6.  

Figure 3 shows that the use of DRS lowers eVMT by about 5% compared to the absence of 
pooling, and %eVMT was moderately higher for the 1:200 fleet than the 1:10 fleet, largely due 
to intensity of operation for the former and high vehicle idling for the latter. Contrary to 
Gurumurthy et al.’s geofence study, %eVMT also rose with multiple simultaneous geofences, 
from 16% without a fence to between 20.5% and 23.0% in the DRS-enabled scenarios for the 
county and city core scenarios, respectively. The difference may be arising from the trip 
distribution differences in single- and multi-centric regions. The 1:10 fleet shows a 3% higher 
eVMT with a county-level geofence, while its lower (only 2%) between the county-level and 
city-level geofences. Similarly, smaller fleets show a 5% increase in eVMT comparing county-
level fences to the absence of a fence, and a 3% increase between the county and city fences. 
This could be due to the lower SAV demand served when considering only four county or city-
level fences, with previous studies only showing a reduction in eVMT as trip densities 
increased  (Gurumurthy et al., 2021). DRS by itself did not have a substantial effect on reducing 
eVMT in both geofence scenarios owing to the markedly low demand within a geofence.  
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Figure 3: Effect of geofencing on percent eVMT and trip density 

A 1% decline in SAV VMT for the1:10 fleets and a 10% increase in SAV VMT for 1:200 fleets 
is observed as the area of operation reduces from county to the denser city limits. Figure 4 
illustrates that the average daily SAV VMT is reduced by 53% for 1:200 fleets and by 45% for 
1:10 fleets with the introduction of geofences at the county and city regions with respect to the 
base case. DRS saves more VMT when there’s no fence used, owing likely to the availability 
of sufficient trip request demand. The no-DRS case follows a similar trend with a VMT 
reduction 50%. Idle time increased by 6% when geofencing was applied from 85-92% but 
remained relatively constant within the county and denser city service areas, indicating higher 
fleet utilization without a fence. Assuming fixed fleet ratios for different geofences create an 
imbalance in trip requests to vehicles available, creating deficits and surpluses in vehicles 
needed depending on the extent of demand in the geofence. Idle times are high even with 1:200 
fleets, prompting the question of whether larger capacity SAVs (but fewer in operation) would 
make sense for such geofenced regions. A combination of strategies may be required to 
increase fleet utilization while fulfilling desired levels of service. 

 
 

Figure 4: Effect of geofencing on SAV VMT and idle time 

Figure 5 reveals a maximum of only 1% reduction in system VMT across all scenarios arising 
primarily with DRS and when geofences are bounding core cities in the mutli-centric region. 
The low magnitude difference can be attributed to the low mode share when dissecting artificial 
SAV demand  by geofence. Higher percentages of SAV demand dissected by geofence may 
provide better benefits. This also follows from a pattern of diminishing VMT across geofence 
scenarios, with increased trip shareability as demand of shared trips lowers. Travelers could 
face delays when sharing rides if the system and or fleet VMT lessen unless demand remains 
above a specific threshold. While an average SAV is expected to serve about 30 person-trips 
per day (Fagnant et al., 2015), a maximum of 25.0 and 32.2 person-trips per SAV per day were 
observed in the county and city geofence scenarios, respectively, when employing the 1:200 
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sized fleet. Moreover, SAVs inevitably contribute to eVMT due to traveling between drop-off 
of one trip and the pick-up for the next trip, or when operating with little to no demand 
(Gurumurthy and Kockelman, 2022; Simoni et al., 2019).   

 

 
 

Figure 5: Effect of DRS and geofencing on system VMT 

Small fleet sizes increase wait time considerably, as expected, and limit the number of people 
that are served within an acceptable wait time. Figure 6 illustrates the distribution of peak hour 
average wait times and AVO across the two scenarios. High wait times can also drive the 
demand for SAVs down which affects AVO. AVO values are higher in the base case compared 
to the two geofence scenarios due to higher demand, although this does not concur with the 
expected corollary of the impact of low trip density in large areas. AVO is generally higher in 
smaller fleet sizes and reduces more slightly with the addition of geofences while larger fleets 
seem to have a marginal change in AVO. Average passenger wait times increase by 3.5 minutes 
across the largest to the smallest fleet in the base case with DRS while the increase is 
considerably higher at 6 minutes without DRS. Geofencing lowers these differences in wait 
time across fleet sizes to under 2 minutes regardless of DRS.  
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Figure 6: Effect of geofencing on wait time and AVO 
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CONCLUDING REMARKS.   

This study simulated travel in the multi-centric DFW region and provides results on the effect 
of multiple simultaneous geofences used to constrain fleet operation under potentially high 
demand-density areas. Results suggest that geofencing in the manner described reduced system 
VMT by up to 1%, mainly due to the curtailment of longer-than-average trip lengths between 
geofence regions. Shared rides also decreased as the area of operation diminished owing to 
lower absolute demand. Such a region is certain to generate high VMT due to various sprawling 
neighborhoods that are accessible and close to multiple cities. Moreover, these relatively 
sizable multiple cities with high trip densitites present a unique opportunity to study SAV 
behavior across a large region analogous to TNCs like Uber and Lyft, under different policies. 
Varying fleet sizes under multiple geofence scenarios also revealed that peak hour average wait 
times were reduced to under 5 minutes from over 7 minutes within each geofence scenario, 
which could facilitate accommodating more person-trips if there were such demand. The 
functional transit and rail system of the area serving the major cities of Dallas and Fort Worth 
has fostered quicker access to the outskirts of congested cities, making it ideal for future SAV 
minibus operations. While shorter trips lower travel times, it also means that relocation and 
unoccupied travel could comprise a greater share of the total VMT. Idle time was also shown 
to increase by 7% from 85 to 92% when geofencing was enforced even with larger fleet sizes. 
The efficacy of fleet sizing can reveal itself if other factors are taken into consideration, like 
different pricing strategies for trips to encourage more ride sharing.  

Limitations and Future Work 

Some limitations were encountered in this study setup, such as the assumption on mode 
share, which can be improved. The assumption of only 7% SAV mode share can be modified 
through a series of sensitivity tests, to understand if benefits are higher demands. Similarly, 
geofences covering the entire region may be useful, such that all demand has access to an 
SAV (either a single or dual-compartment seater for intra-zonal travel, or a higher-capacity 
minibus for inter-zonal travel). Identifying more ways to accommodate all travel, while 
limiting %eVMT is key to realizing greater system benefits. The unlikely increase in eVMT 
with the geofencing scenarios could be because we did not cover all demand in the region 
while assuming the same fleet size for all the geofence service areas. Detour times by zones 
with lower trip density could be adjusted to reflect demand in the region to account for 
eVMT. 
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