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 25 
ABSTRACT 26 
This study analyzes pedestrian crash counts at more than one million intersections and midblock 27 
segments using Texas police reports over ten years. Key contributions include methods for 28 
obtaining so many points and related variables across a vast network, while controlling for traffic 29 
control variables, highway design details, traffic attributes, and land use information across 30 
multiple sources. A negative binomial model for crash counts across the State of Texas and within 31 
the City of Austin suggests that signalized intersections, arterial roads, more lanes, narrower or 32 
non-existent medians, and wider lanes coincide with higher crash rates, per vehicle-mile traveled 33 
(VMT) and per walk-mile traveled. The analysis suggests that daily VMT increases the likelihood 34 
of pedestrian crashes, and midblock segments are more vulnerable than intersections, where one 35 
standard deviation increase of VMT causes an increase in crashes at intersections and midblock 36 
sections of 52% and 187%, respectively. Also, the number of intersection crashes in Austin is 37 
higher than in the rest of Texas, but the number of midblock crashes is lower. The analysis of the 38 
Austin area suggests that the central business district location is critical, with midblock crashes 39 
being more sensitive (240%) in this area than intersection (78%) crashes. Also, a significant 40 
inequity was found in the area: an increase of $41,000 in average household income leads to a 41 
reduction of 32% (intersections) and 39% (midblock) in pedestrian crash rates. 42 
 43 
Keywords: Pedestrian crashes, intersection safety, midblock crashes, roadway inventory, negative 44 
binomial crash count models. 45 
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INTRODUCTION 1 
Despite being the oldest and most environmentally friendly form of transportation, walking has 2 
become increasingly risky in the U.S. While the total walk-miles traveled (WMT) is estimated to 3 
have risen 16% (BTS, 2019) between 2009 and 2017, the number of (reported) pedestrian deaths 4 
rose 46% (GHSA, 2020). Texas averaged 1.14 pedestrian deaths per 100,000 residents in 2019 5 
(GHSA, 2020), which is 26% higher than the U.S. average of 0.900. Transportation planners and 6 
policymakers can reduce crash risks by implementing countermeasures based on benefit-cost 7 
analyses (BCA). However, such analyses do best with site-specific evaluations that are difficult to 8 
do at scale, due to a lack of detailed road feature variables. Between 2010 and 2020, the number 9 
of intersection crashes doubled in both Texas and the City of Austin, while midblock segment 10 
crashes rose 30% and 75%, respectively (Figure 1). Figure 1 shows how midblock pedestrian 11 
fatalities are more prevalent than those at intersections (where vehicle speeds are often lower, and 12 
pedestrians are more expected), at a rate of more than 3 to 1. 13 
 14 
Most past pedestrian safety studies use macro-level information, with data aggregated at traffic 15 
analysis zones (TAZs) (Siddiqui et al., 2012), census tracts (Wier et al., 2009), census blocks 16 
groups (Noland et al., 2013), and zip codes (Ukkusuri et al., 2012) while studies at point level are 17 
more limited. In the past, a key limitation of intersection-safety studies is the sample size due to a 18 
lack of information across wide networks. Xie et al. (2018) used a Bayesian measurement error 19 
model with 262 signalized intersections in Hong Kong and found that the number of crossing 20 
pedestrians and passing vehicles, the presence of curb parking, and the presence of shops were 21 
associated with higher pedestrian crash counts, while the presence of playgrounds came with lower 22 
counts. Pulugurtha and Sambhara (2011) used 176 randomly selected signalized intersections in 23 
Charlotte, North Carolina, to understand the factors affecting pedestrian crash counts using a 24 
negative binomial (NB) count model using different buffers widths (0.25-mile, 0.5-mile, and 1-25 
mile) to extract data at intersection levels. They found that using a 0.5-mile buffer width to extract 26 
demographic, socio-economic, and land use characteristics would yield better estimates for low 27 
pedestrian activity signalized intersections, 1-mile buffer width would yield better estimates in 28 
case of high pedestrian activity signalized intersections. Unfortunately, estimation of exposure 29 
variables, like site-level/highly local WMT, is challenging since pedestrian volumes are rarely 30 
available (unlike annualized vehicle counts). Studies have relied on surrogate measures, like the 31 
presence of schools and businesses, car ownership, pavement condition, sidewalk width, bus 32 
ridership, intersection control type, and presence of sidewalk barriers, to develop analyses, as seen 33 
in Lee et al. (2019). 34 
 35 
Midblock level analyses are more common in past research since midblock crashes tend to be more 36 
severe and more common, and most transportation departments maintain corridor design variables. 37 
Kwayu et al. (2019) analyzed two years of crash information from Michigan and found that the 38 
average mid-block pedestrian crash took place while pedestrians were crossing 130 feet from the 39 
nearest intersection/crosswalk. Key predictors of more pedestrian deaths in these settings were a 40 
lack of lighting during a nighttime crash, crashes involving an older pedestrian, and crashes along 41 
corridors that carry higher traffic volumes. Diogenes and Lindau (2010) developed a Poisson 42 
regression using 21 midblock crosswalks and found that pedestrian crash counts rise with the 43 
presence of busways and bus stops, road widths, more traffic lanes, and higher volumes of 44 
pedestrians and vehicles. Analyses at both intersections and midblock segments for the same 45 
locations are limited and tend to focus on small areas (Lightstone et al., 2001) or are based on 46 
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comparisons of crash characteristics (Sandt and Zegeer, 2006). To the authors’ knowledge, no 1 
published work has yet developed crash count models for both intersections and midblock 2 
segments across thousands of locations.  3 
 4 
The main goal of this research is to develop a micro-level analysis of pedestrian crashes at 5 
intersections and midblock segments using historical pedestrian crash information from police 6 
reports in Texas. The contributions of this work include (1) a method to estimate intersection and 7 
midblock segment geometries with roadway characteristics that can be used to better understand 8 
crashes at different locations. (2) Using the developed geometries, NB pedestrian count models 9 
are estimated using historical pedestrian crash information from police reports in Texas to 10 
understand the factors associated at intersection and midblock levels. (3) A specific case study of 11 
the City of Austin is also estimated to understand local affecting factors.  12 
 13 

 
(a) Pedestrian crashes in Texas 

 
(b) Pedestrian crashes in the City of Austin 

  
(c) Severity levels – intersection crashes (d) Severity levels – midblock crashes 

FIGURE 1 Description of pedestrian crashes at intersections and midblock (Texas 14 
Department of Transportation, 2020).  15 
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DATA DESCRIPTION 1 

Crash Count Data 2 
The Texas Crash Records Inventory System is called CRIS (Texas Department of Transportation, 3 
2020), and contains records from police crash reports across Texas’ 254 counties and 268,597 4 
square miles. Crash variables include time and location, persons and vehicles involved, injury 5 
severities, and road conditions. Many crashes are never reported to police or are not flagged for 6 
CRIS inclusion. These are typically proper-damage-only or no-injury crashes, but drivers and 7 
pedestrians will leave the scene for other reasons as well. And police who deem a reported crash 8 
to be worth less than the $1,000 minimum crash cost threshold (for recording purposes) often do 9 
not record the crash formally.  10 
 11 
From January of 2010 through December of 2019, 5.63 million crash incidents were recorded in 12 
the TxDOT CRIS database. A total of 78,498 crashes involving a pedestrian (including those 13 
caused or contributed to by a pedestrian, such as a driver swerving into a tree to avoid a pedestrian) 14 
are analyzed here. These are 1.40% of all reported and then recorded crashes.  15 
Road Inventory Data 16 
The TxDOT Roadway Inventory database was used to obtain road-specific attributes (Texas 17 
Department of Transportation, 2018). The database is available in GIS shapefile and tabular 18 
format. Both on-system (under the jurisdiction of TxDOT) and off-system roads (not under 19 
TxDOT jurisdiction) are included in the database. The centerline miles show the mileage of a 20 
segment, regardless of the number of lanes, while the lane miles include the mileage of all lanes. 21 
Important road attributes include highway design and traffic characteristics such as daily vehicle 22 
miles traveled (DVMT), annual average daily traffic (AADT), percentage of truck, shoulder and 23 
median types and width, number of lanes, and speed limit.  24 
Other Data Sources 25 
Other data sources include school, hospital, and transit stops, such as school locations from the 26 
Texas Education Agency, hospital locations from the Homeland Infrastructure Foundation, and 27 
transit stop locations from Capital Metro Transit Agency. The Capital Area Metropolitan Planning 28 
Organization (CAMPO) TAZ data were used for population and employment density for 29 
household income for the City of Austin. The WMT data are obtained at the individual respondent 30 
level, via the 2017 National Household Travel Survey (NHTS) and modeled as a function of 31 
respondent-level demographics and local land-use variables (such as population and job density of 32 
the respondent's home census tract), and then scaled up to Public Use Microdata Area 33 
demographics, based on methods found in (Rahman et al., 2021). 34 
 35 
GEOMETRY ESTIMATION 36 

Purpose of Geometry Estimation 37 
To facilitate the analysis of pedestrian-related crashes, it is necessary to spatially model crash 38 
locations with respect to known roadways, intersections, and traffic signals. This allows analyzing 39 
crash-prone “hotspots” tied to intersections and segments. This research focuses upon crashes that 40 
take place at mid-block locations or places that are not associated with an intersection between 41 
public streets. Two criteria are considered in determining whether a crash is “midblock.” First, the 42 
original police report contains a field that indicates whether the officer categorizes the crash as 43 
happening at an intersection. Unfortunately, it is sometimes unclear as to whether that intersection 44 
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is the center “box” area where public streets typically cross, a right turn yield link, or a roundabout. 1 
Second, the geographic crash location analysis against a map may show that the crash occurs far 2 
enough away from an intersection that it may be considered a midblock crash. 3 
Uniform Segments 4 
To support research analysis efforts, an underlying representation of roadway segments is 5 
prepared, and pedestrian-related crashes nearest to these segments are then associated with these 6 
segments. A geographic database of road segments with “multi-line string” geometry found in the 7 
TxDOT Roadway Inventory serves as the starting representation for all roadways in Texas. Each 8 
of these come labeled with street name, physical roadway characteristics such as functional class 9 
and lane count, estimated daily traffic volume, and maintenance information. In that inventory, 10 
each roadway consists of one or more segments. These segments are generally bidirectional except 11 
for those that represent one-way streets and divided highways. 12 
 13 
A challenge in using the TxDOT Roadway Inventory is that individual roadway segments may be 14 
extremely short—a minimum of 5 feet—to represent a high rate of changes in inventory values 15 
along a roadway, or extremely long—up to 44 miles—for roadways that see few changes. Project 16 
activities benefit from the use of fairly consistently spaced segments, necessitating a remapping 17 
effort to create derived datasets of mostly uniform segments. 18 
 19 
Two derived sets are created for this research: 1-mile-long target segment length and 0.1-mile-20 
long target segment length. In each, key criteria of the underlying segments that overlap the most 21 
from the TxDOT Roadway Inventory are mapped to these new segments. To create these, an 22 
algorithm divides up roadways to a new set of segments targeted at length ℓ using these rules: 23 

• If the original roadway is less than 1.25 ∙ ℓ miles, then the derived roadway is represented 24 
with one segment of the same length. 25 

• If the original roadway is less than 2(1.25 ∙ ℓ) miles, then the derived roadway is represented 26 
with two segments of equal length. 27 

• Otherwise, the derived roadway is represented as starting and ending with segments no less 28 
than 0.75 ∙ ℓ miles on either end, with ℓ-mile segments in-between.  29 

 30 

Intersections and Signals 31 
Mapping locations of crashes to nearby intersections is also important for this research to 32 
distinguish from midblock crashes. Unfortunately, the TxDOT Roadway Inventory does not offer 33 
explicit intersection point geometry. Although one can analyze the Roadway Inventory to evaluate 34 
where roadway segments intersect, it is impossible to understand where bridges exist (especially 35 
near expressway interchanges), leading to numerous false-positive intersections, especially around 36 
expressways. 37 
 38 
OpenStreetMap (OpenStreetMap contributors, 2021a) was leveraged to positively map 39 
intersection and signal locations and apply them to appropriate locations in the TxDOT Roadway 40 
Inventory geometry. To do this, queries to a local instance of the Overpass API (OpenStreetMap 41 
contributors, 2021b) were created among approx. 30x30-mile tiles to return all candidate 42 
intersection seed points throughout Texas. This initial set came with caveats that many 43 
OpenStreetMap intersections on divided roads of all types exist for each direction. In contrast, the 44 
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intersections needed for the TxDOT Roadway Inventory would be needed per roadway. Other 1 
criteria were sought in positively identifying this first set of candidate intersections: 2 

• It has a signal (tag “highway”: “traffic_signals”). This will also catch signals for mid-block 3 
crossings. Or, 4 

• It is met by more than one motorway that has a different type and name combination. 5 
• Nodes serviced by only motorways and motorway links are labeled as a “junction.” 6 
• Nodes that are joined by the ends of just 2 OpenStreetMap roadways are not counted, as 7 

they are likely a continuous stretch of roadway. 8 
 9 
Next, to combine together candidate intersections that were closely positioned next to each other, 10 
the DBScan clustering algorithm (Ester and Kriegel, 1996) available in the PostGIS/PostgreSQL 11 
database (PostGIS, 2021) was leveraged to combine intersections that are less than 250 feet in 12 
distance from each other. Finally, roadway segments in the 1-mile and 0.1-mile uniform segment 13 
sets were associated with the clustered candidate intersection locations through a nearest-proximity 14 
search, allowing for candidate intersections to be associated if they are less than 130 feet from the 15 
roadway geometry. 16 
 17 
This approximation is in support of efforts to perform initial rounds of this research. It had been 18 
found that this nearest-neighbor method of matching intersections to geometry by proximity alone 19 
still results in erroneous matches, especially around closely-positioned, urban expressway on- and 20 
off-ramps. However, because this research has emphasized urban streets and corridors that do not 21 
lie along expressways, the success rate for the nearest-neighbor matching approach has empirically 22 
been sufficient. It is anticipated in future work that a map-matching strategy (Perrine et al., 2015) 23 
can map valid pathways through the OpenStreetMap roadway network to underlying TxDOT 24 
Roadway Inventory geometry, allowing intersections to be more successfully tied with only the 25 
roadway segments that are truly connected with those intersections.  26 
 27 

Estimated Geometries  28 
An example of the estimated geometries is shown in Figure 2. The 0.1-mile roadway segments are 29 
shown along with the intersections in a close-up of the City of Austin downtown area. The 30 
geometry matches the roadway map. Figure 3 shows the total roadway segments and intersections 31 
for the City of Austin and for the entire state. A total of 700 thousand (~1-mile uniform) segments 32 
drawn from 575 thousand segments are used to describe the State of Texas, while the City of 33 
Austin consists of 20 thousand (0.1-mile uniform) segments and 41 thousand intersections. A 34 
detailed description of these geometries is summarized in Tables 1 and 2, showing summary 35 
statistics of infrastructure characteristics as well as pedestrian crash counts based on the crash type 36 
and map matching process. 37 
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 1 
FIGURE 2 Roadway segments and intersections in the City of Austin downtown area. 2 
 3 
CRASH COUNT MODELING 4 
An NB count model was used for pedestrian crash counts. The expected number of pedestrian 5 
crash counts 𝐸(𝑌!) along the 𝑖"# intersection or midblock segment is expressed as follows: 6 
 7 

E(𝑌!) 	= exp(𝛽$	 +	∑ 𝑥!&𝛽&& + 𝜀!),     (1) 8 
 9 

where 𝛽& is the 𝑘"# covariate, 𝜀!  is a random error term which follows a Gamma distribution           10 
𝜀!~Gamma(𝛾, 𝛾), 𝑌! represents the total pedestrian count at intersection 𝑖 with mean E(𝑌!) = 𝜇! 11 
and variance Var(𝑌!) = 𝜇! + 𝜌𝜇!', and 𝜌 is the dispersion parameter (𝜌 = 0 for a Poisson model).  12 

Additionally, a sensitivity analysis was applied to the NB estimates to understand the 13 
covariates’ effects. Specifically, for each covariate, one standard deviation or binary change is 14 
applied. The modified variables are passed to the model to calculate the prediction. Then, the 15 
difference between the mean of original prediction and permuted prediction is calculated to 16 
represent the contribution of that covariate. Because of its appropriateness and suitable fit for 17 
modeling count data, this methodology has been applied in other research, including pedestrian 18 
crash occurrences at the segment level (Rahman et al., 2021) and e-scooter count models (Dean 19 
and Zuniga-Garcia, 2022).   20 
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(a) Roadway segments City of Austin (b) Intersections City of Austin 

  
(c) Roadway segments Texas  (d) Intersections Texas   

FIGURE 3 Description of the roadway segments and intersections.  1 
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TABLE 1 Summary statistics of variables, Texas  1 

Variables 
Intersections* Roadway segments (1 mi uniform) 

Mean S.D. Min. Max. Mean S.D. Min. Max. 
Number of pedestrian crashes 0.020 0.215 0 31 0.062 0.502 0.0 37.0 
Signalized intersection indicator 0.021 0.143 0 1 

  
Number of approaches 3.177 0.672 0 5 
Intersections crossed    2.781 2.693 0 25 

Walk miles traveled per pop. dens.      325       453           
0      15,339       244        398  0     15,339  

Daily vehicle miles traveled    2,458     8,900  0   432,194    1,448      6,935  0   432,194  
Speed limit (mph) 56.970 6.460 10 75 59 5 10 75 
Number of lanes 2.229 0.713 1 8 2.068 0.401 1 12 
Lane width (ft) 10.494 2.113 0 48 9.915 1.439 0 48 
Median width (ft) 0.364 6.771 0 519 1.341 10.614 0 710 
Design: one-way road indicator 0.009 0.096 0 1 0.011 0.102 0 1 
Annual average daily traffic lane      953     1,852  1   142,733    527      1,615  1   100,335  
Percentage of trucks 4.803 5.328 0 93 4.914 5.964 0 93 
Functional class: local 0.677 0.467 0 1 0.814 0.389 0 1 
Functional class: collector 0.178 0.382 0 1 0.110 0.313 0 1 
Functional class: arterial 0.145 0.352 0 1 0.075 0.264 0 1 
On system roadway indicator 0.150 0.357 0 1 0.137 0.343 0 1 
Rural (pop. < 5000) 0.273 0.445 0 1 0.400 0.490 0 1 
Small urban (pop: 5000–49999) 0.120 0.324 0 1 0.088 0.283 0 1 
Urbanized (pop: 50000–199999) 0.109 0.312 0 1 0.086 0.281 0 1 
Large urbanized (pop: 200000+) 0.498 0.500 0 1 0.426 0.495 0 1 
Distance to nearest hospital (miles) 5.114 5.167 0 19 6.383 5.639 0 19 
Transit stops within 0.25-mi buffer 0.021 0.144 0 1 0.021 0.144 0 1 
Number of stops (0.25-mi buffer) 0.066 0.623 0 26 0.079 0.813 0 44 
City of Austin indicator 0.027 0.163 0 1 0.023 0.151 0 1 
S.D. = standard deviation, Min. = minimum, Max. = maximum 
* Major approach only                 

  2 
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TABLE 2 Summary statistics of variables, City of Austin 1 

Variables 
Intersections* Roadway segments (0.1 mi uniform) 

Mean S.D. Min. Max. Mean S.D. Min. Max. 
Number of pedestrian crashes 0.074 0.489 0 13 0.042 0.274 0 9 
Signalized intersection indicator 0.042 0.201 0 1 

  
Number of approaches 3.043 0.659 0 5 
Intersections crossed    0.994 2.113 0 5 
Walk miles traveled per pop. dens.      756       808  7      8,180       647        736        7        8,180  
Daily vehicle miles traveled   2,627     7,182  0   133,254    4,133    11,904  1   133,254  
Speed limit (mph) 56.737 5.698 10 65 57.359 5.001 10 70 
Number of lanes 2.259 0.731 1 6 2.266 0.736 1 6 
Design: one-way road indicator 0.013 0.114 0 1 0.049 0.216 0 1 
Annual average daily traffic lane   1,499     2,753  58     97,049    2,123      4,645  2     97,049  
Percentage of trucks 3.294 0.708 0 20 3.398 1.024 0 20 
Functional class: local 0.718 0.450 0 1 0.708 0.455 0 1 
Functional class: collector 0.165 0.371 0 1 0.161 0.368 0 1 
Functional class: arterial 0.117 0.321 0 1 0.131 0.337 0 1 
On system roadway indicator 0.039 0.194 0 1 0.123 0.328 0 1 
Distance to nearest hospital (miles) 2.092 1.279 0 10 2.258 1.417 0 10 
Transit stops within 0.25-mi buffer 0.220 0.414 0 1 0.211 0.408 0 1 
Number of stops (0.25-mi buffer) 1.022 2.391 0 18 1.038 2.562 0 21 
Population density (per sq. mile)   4,443     3,398  0 64812   3,775      3,282  0 64812 
Employment density (per sq. mile)   2,344     9,526  0   419,403    2,196      8,469  0   419,403  
Median income ($10k) 7.193 3.891 0 25 7.228 4.109 0 25 
Central business district indicator 0.011 0.105 0 1 0.008 0.089 0 1 
S.D. = standard deviation, Min. = minimum, Max. = maximum 
* Major approach only                 

 2 
RESULTS AND DISCUSION 3 
The results from the NB model are summarized in Table 3 (Texas) and Table 4 (Austin). Two 4 
models are estimated for each location; an intersection and midblock-level model is described 5 
along with sensitivity analysis summarized in Figures 4 and 5. The dispersion parameter (𝜌) of the 6 
four models is greater than one, indicating that the data is over-dispersed, and an NB model is 7 
preferred over a Poisson model. 8 
 9 
The Texas model (Table 3) shows a positive correlation between the WMT and the number of 10 
pedestrians crashes across intersections and midblock-segment models, likely due to increased 11 
exposure levels. However, previous research also found that the relationship between crash 12 
exposure and crash rates is non-linear. It has rates falling off dramatically as walk levels rise, 13 
presumably due to drivers expecting more pedestrians in high-WMT zones and safer pedestrian 14 
environments that encourage walking (Wang and Kockelman, 2013).   15 
 16 
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The signalized intersection indicator in the intersection model is found to be among the most 1 
significant variables in the model. The sensitivity analysis indicates that the number of pedestrian 2 
crashes is doubled with signalized intersections when compared with unsignalized intersections 3 
with everything else remaining constant. Although signals are relatively safer than other control 4 
types for high pedestrian activity areas, higher usage increases the risk of accidents, as found in 5 
previous research (Lee et al., 2019; Xie et al., 2018). Similarly, the number of approaches 6 
(intersections) and the number of intersections crossed by the roadway segment show a positive, 7 
significant effect on the rate of pedestrian crashes. Specifically, one standard deviation of the 8 
number of approaches (0.67) leads to an increase of 31% in pedestrian crashes, while the standard 9 
deviation of 2.8 intersections crossed increases the crash rate 29%.  10 
 11 
Among the highway design variables, the estimates indicate that higher DVMT significantly 12 
increases the number of pedestrian crashes. Interestingly, the effect of DVMT is more critical for 13 
the midblock segments than for the intersection model, as suggested by the sensitivity analysis, 14 
where one standard deviation increase causes 52% more crashes at intersections and 187% more 15 
crashes at midblock sections. Other variables such as the number of lanes and lane width also 16 
contribute to higher pedestrian crash rates. Higher posted speed limits and longer median widths, 17 
in contrast, tend to coincide with a reduction in crash rates. Roadways with a high speed limit are 18 
related to higher risk, and pedestrians tend to avoid these areas as there is limited pedestrian 19 
infrastructure. However, research findings indicate that, although the crash frequency is lower, the 20 
severity is significantly higher in areas with high speed (Bernhardt and Kockelman, 2021; Rahman 21 
et al., 2021; Zhao et al., 2021). 22 
 23 
One-way roads are related to fewer crashes at midblock segments, while this variable was not 24 
significant for intersections at a 95% confidence level. The effect on midblock crashes is likely 25 
due to the reduced exposure on segments (less distance to cross). The intersection model suggests 26 
that variables from both major and minor approaches have a similar effect. The minor approach 27 
has a slightly lesser (but still significant) impact, except for the number of lanes, which shows no 28 
significant effect. However, the one-way road (minor) indicator variable showed statistical 29 
significance for the model and as found for midblock segments, the effect is negative, suggesting 30 
that one-way roads led to fewer pedestrian crashes at intersections as well.   31 
 32 
Traffic attributes such as AADT and the percentage of trucks are also highly related to an increase 33 
in the crash rate at intersections. The roadway functional class is compared with local and collector 34 
roads using the indicator variables for arterials (freeways and highways are not included in the 35 
model). The results indicate a positive and significant effect, where arterial roads tend to have a 36 
higher number of pedestrian crashes than local and collector roads for both intersections and 37 
midblock segments. This effect is consistent in previous research where arterials are categorized 38 
as a health problem due to high pedestrian crash frequency, excessive noise and pollution 39 
(McAndrews et al., 2017). TxDOT-maintained roads (“on-system roads”) show a negative effect, 40 
suggesting that the number of pedestrian crashes is lower on these roads compared to other 41 
roadways. However, this finding contrasts previous research analysis of pedestrian crashes that 42 
uses the Texas Roadway Inventory geometry (Rahman et al., 2021). This may be because this 43 
study developed an analysis at a smaller scale with separations between intersections crashes and 44 
midblock crashes, while previous studies aggregated crashes and analyzed only segment-level 45 
variables.  46 
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TABLE 3 Estimation results of NB for pedestrian crashes, Texas 1 
  Intersections Midblock Segments 

  Coeff. Std. Error P-value Coeff. Std. Error P-value 
(Intercept) -8.694 0.216 0.000 -8.035 0.098 0.000 
WMT per pop dens. (log) 0.335 0.013 0.000 0.305 0.007 0.000 
Signalized intersection (ind.) 1.426 0.032 0.000    

Number of approaches 0.398 0.019 0.000       
Intersections crossed        0.093 0.002 0.000 
DVM (log) [major] 0.195 0.008 0.000 0.522 0.006 0.000 
Speed limit (mph) [major] -0.020 0.002 0.000 -0.013 0.001 0.000 
Number of lanes [major] 0.132 0.012 0.000 0.217 0.010 0.000 
Lane width (ft) [major] 0.033 0.004 0.000 0.041 0.003 0.000 
Median width (ft) [major] -0.006 0.001 0.000 -0.014 0.001 0.000 
One-way road (ind.) [major] 0.095 0.052 0.068 -0.906 0.048 0.000 
DVM (log) [minor] 0.136 0.008 0.000       
Speed limit (mph) [minor] -0.021 0.002 0.000       
Number of lanes [minor] -0.004 0.018 0.842       
Lane width (ft) [minor] 0.040 0.005 0.000       
Median width (ft) [minor] -0.027 0.005 0.000       
One-way road (ind.) [minor] -0.211 0.063 0.000       
AADT per lane [major] 1.76E-05 4.53E-06 0.000 -7.67E-05 4.19E-06 0.000 
Truck percentage [major] 0.020 0.003 0.000 0.003 0.002 0.100 
Arterial (ind.) [major] 0.444 0.037 0.000 0.198 0.028 0.000 
On system roadway (ind.) -0.230 0.036 0.000 0.209 0.028 0.000 
Rural (ind.) -0.107 0.087 0.218 -0.339 0.041 0.000 
Small urban (ind.) -0.108 0.055 0.050 0.049 0.034 0.154 
Large urbanized (ind.) 0.171 0.037 0.000 0.170 0.025 0.000 
Distance to nearest hospital 
(mi) -0.023 0.006 0.000 -0.009 0.003 0.002 

Transit stops (ind.) 0.525 0.047 0.000 0.526 0.033 0.000 
Number of stops  0.042 0.008 0.000 0.049 0.004 0.000 
City of Austin (ind.) 0.327 0.047 0.000 -0.392 0.042 0.000 
No. of observations     699,954          574,910      
Dispersion Parameter (ρ):   0.393     0.575     
McFadden's R2: 0.483     0.543     
Likelihood ratio test (χ2)       32,515            62,980      
Prob > χ2 0.000     0.000     
2 x log-likelihood -86,105     -161,539     

  2 
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(a) Intersections 

 
(b) Midblock segments 

FIGURE 4 Sensitivity analysis, Texas.  1 

-60% -40% -20% 0% 20% 40% 60% 80% 100% 120% 140%

WMT per population density (log)
Signalized intersection (ind.)

Number of approaches
DVMT (log) [major]

Speed limit (mph) [major]
Number of lanes [major]

Lane width (ft) [major]
Median width (ft) [major]

One-way road (ind.) [major]
DVM (log) [minor]

Speed limit (mph) [minor]
Number of lanes [minor]

Lane width (ft) [minor]
Median width (ft) [minor]

One-way road (ind.) [minor]
AADT per lane [major]

Truck percentage [major]
Arterial (ind.) [major]

On system roadway (ind.)
Rural (ind.)

Small urban (ind.)
Large urbanized (ind.)

Distance to nearest hospital (mi)
Transit stops (ind.)

Number of stops
City of Austin (ind.)

-60% -40% -20% 0% 20% 40% 60% 80% 100% 120% 140% 160% 180% 200%

WMT per population density (log)
Intersections crossed

DVMT (log)
Speed limit (mph)

Number of lanes
Lane width (ft)

Median width (ft)
One-way road (ind.)

AADT per lane [major]
Truck percentage [major]

Arterial (ind.) [major]
On system roadway (ind.)

Rural (ind.)
Small urban (ind.)

Large urbanized (ind.)
Distance to nearest hospital (mi)

Transit stops (ind.)
Number of stops

City of Austin (ind.)



Zuniga-Garcia, Perrine, and Kockelman  

 13 

Population is accounted for in the land use variable where urbanized areas (having a population of 1 
50,000-200,000) are compared to rural, small urban, and large urbanized areas (refer to Table 1 2 
for more details). Compared to urbanized areas, large urbanized areas (population greater than 3 
200,000) show a positive coefficient, suggesting a positive effect. In contrast, small urban areas 4 
show a negative effect, suggesting that the rate of crashes is lower in these areas. This effect is 5 
consistent with expectations since denser areas have a higher number of pedestrians, and the 6 
exposure is higher due to the presence of more vehicles. The distance to the nearest hospital is also 7 
analyzed; the coefficient is found to be negative and significant at a confidence level of 95%. This 8 
suggests that the number of crashes is lower in areas with hospitals located at a close distance, 9 
which is comparable to the finding of higher crashes in denser areas. The sensitivity analysis 10 
indicates that one standard deviation of distance (approximately 5 miles) leads to a decrease of 11 
11% (intersections) and 5% (midblock segments) in pedestrian crashes. However, it is important 12 
to mention that although the number of crashes is low, the distance to the hospital can be critical 13 
for response time and prompt injury treatment.  14 
 15 
The presence of public transportation is an indirect measure of pedestrian exposure. In this study, 16 
transit information is included in the model through two variables. The first one is an indicator 17 
variable of the presence of transit within a buffer of 0.25 miles from the geometry centroid, and 18 
the second one is the count of transit stops in this area. As expected, both variables indicate that 19 
the number of pedestrian crashes is higher in the presence of transit, with a significant level of 20 
95%. The sensitivity analysis suggests that the crash rate is about 50% higher in comparison to 21 
areas with the same characteristics without transit stops.   22 
 23 
The Texas model includes a variable to indicate the location of the City of Austin and compare 24 
crashes with the rest of the state. Interestingly, the number of intersection crashes in Austin is 25 
higher than in the rest of Texas, but the number of midblock crashes is lower. Similarly, Figure 1 26 
suggests that the number of intersection crashes in Austin is comparable to the number of midblock 27 
crashes, mainly in recent years (after 2017).  28 
 29 
The Austin-specific model in Table 4 shows an intersection model that is less sensitive to WMT 30 
and signalized intersections than the Texas model but still shows a significant value. It is likely 31 
that pedestrian crashes in non-signalized intersections are more frequent in this area compared to 32 
the state of Texas. The number of approaches also shows a positive coefficient. In terms of 33 
midblock segments, the number of intersections crossed is not significant, possibly due to the size 34 
of the segments. In this case, the segments are 0.1-mile long, and the number of intersections 35 
crossed is significantly lower than the case where 1-mile segments were used in the Texas model.  36 
 37 
DVMT has a positive significant effect on the number of crashes in the City of Austin. However, 38 
the sensitivity analysis suggests that the effect is less than the results obtained from the Texas 39 
model. One standard deviation increase of DVMT leads to a 40% (intersection) and 72% 40 
(midblock) increase in the number of pedestrian crashes. The effect of the speed limit is only 41 
significant for the midblock segments and not for the intersections model, and the sensitivity 42 
change is comparable to the rest of the state. The number of lanes also has a positive and significant 43 
coefficient. Variables such as lane width, median width, and one-way roads are not significant at 44 
a 95% confidence level for the intersections model (in both cases, major and minor approaches).  45 
 46 
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TABLE 4 Estimation results of NB for pedestrian crashes, City of Austin 1 
  Intersections Midblock Segments 

  Coeff. Std. Error P-value Coeff. Std. Error P-value 
(Intercept) 0.360 0.061 0.000 -5.098 0.473 0.000 
WMT per pop. dens. (log) 1.671 0.103 0.000 0.068 0.043 0.114 
Signalized intersection (ind.) 0.123 0.067 0.067       
Number of approaches             
Intersections crossed        0.001 0.012 0.904 
DVM (log) [major] 0.166 0.028 0.000 0.245 0.024 0.000 
Speed limit (mph) [major] -0.007 0.006 0.248 -0.036 0.004 0.000 
Number of lanes [major] 0.375 0.046 0.000 0.411 0.033 0.000 
Lane width (ft) [major] 0.030 0.011 0.009 0.081 0.010 0.000 
Median width (ft) [major] 0.001 0.002 0.726 -0.017 0.004 0.000 
One-way road (ind.) [major] 0.159 0.175 0.735 -1.437 0.160 0.000 
DVM (log) [minor] 0.145 0.029 0.000       
Speed limit (mph) [minor] -0.012 0.009 0.177       
Number of lanes [minor] 0.057 0.063 0.359       
Lane width (ft) [minor] 0.036 0.013 0.006       
Median width (ft) [minor] -0.049 0.020 0.013       
One-way road (ind.) [minor] -0.458 0.182 0.012       
AADT per lane [major] 4.45E-05 1.17E-05 0.000 2.02E-05 9.70E-06 0.038 
Truck percentage [major] -0.019 0.037 0.610 -0.049 0.029 0.084 
Arterial (ind.) [major] 0.229 0.141 0.105 -0.167 0.085 0.049 
On system roadway (ind.) -0.231 0.131 0.077 -0.010 0.108 0.923 
Distance to nearest hospital 
(mi) 0.089 0.046 0.050 0.035 0.031 0.252 

Transit stops (ind.) 0.378 0.116 0.001 0.647 0.091 0.000 
Number of stops  0.028 0.016 0.070 0.013 0.012 0.275 
Population density (sq mi) 2.11E-05 7.41E-06 0.005 5.30E-05 6.30E-06 0.000 
Employment density (sq mi) -1.59E-06 1.61E-06 0.324 3.33E-05 6.82E-06 0.000 
Median income ($10k) -0.099 0.015 0.000 -0.119 0.011 0.000 
CBD (ind.) 0.738 0.182 0.000 1.453 0.157 0.000 
No. of observations       19,194            41,107      
Dispersion Parameter (ρ):   0.821     0.430     
McFadden's R2: 0.616     0.370     
Likelihood ratio test (χ2)        2,808             2,718      
Prob > χ2 0.000     0.000     
2 x log-likelihood -5,618     -10,567     
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(a) Intersections 

 
(b) Midblock segments 

FIGURE 5 Sensitivity analysis, City of Austin. 1 
 2 
In terms of the traffic attributes, AADT is positive and significant for the intersection model (same 3 
as Texas). Still, the percentage of trucks is negative in both models (as opposed to the positive 4 
effect for intersections in Texas). This suggests that pedestrians in Austin are less likely to be 5 
involved in an accident in intersections with a high number of trucks compared to the rest of the 6 
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be obtained from this variable. In comparison to the Texas model, the City of Austin model also 8 
suggests that on-system roads have fewer crashes than other roadways. The distance to hospitals 9 
in the Austin model is not relevant, likely due to the small area selected for the model, where 10 
multiple hospitals are located across the city. The exposure variable for transit presence is 11 
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significant (midblock) and suggests a positive correlation with the number of pedestrian crashes. 1 
However, the variables related to transit are not as sensitive in this model compared to the Texas 2 
model.  3 
 4 
Land use variables such as population density, employment density, and average household 5 
income were approximated using the CAMPO data at the TAZ level to analyze the effects on the 6 
city’s pedestrian crash rate. Population density has a positive and significant effect, as expected. 7 
One standard deviation increase (3.3 thousand individuals per square mile) led to a 15% 8 
(intersections) and 21% (midblock) increase in crash rates. The employment density, in contrast, 9 
does not have an effect on the intersections model. A significant finding suggests that areas with a 10 
higher average household income tend to present fewer pedestrian crashes. An increase of $41,000 11 
in the average household income led to a reduction of 32% (intersections) and 39% (midblock) in 12 
pedestrian crash rates. Finally, an indicator variable of the CBD in the city highlights the 13 
importance of this area, with midblock crashes being more sensitive (240%) in this area than 14 
intersection (78%) crashes, but both models showing a relevant effect. 15 
 16 
SUMMARY AND CONCLUSIONS 17 
In this research, historical pedestrian crash information from police reports in Texas is used to 18 
understand the factors associated with crash rates at intersection and midblock levels. Developing 19 
micro-level analysis is challenging due to the lack of geographic information and characterization 20 
at a statewide scale. Therefore, one of the main contributions of this study is the development of a 21 
methodology to spatially model crash locations with respect to known roadways, intersections, 22 
and traffic signals. Geometry estimations at intersection and midblock levels are obtained, and 23 
information from the roadway infrastructure inventory and other sources is assigned with the 24 
objective of characterizing such geometries. Information such as traffic control (signalized 25 
intersections), highway design variables, traffic attributes, and land use from multiple sources is 26 
combined along with the location of the crashes (separated between intersections and midblock 27 
crashes) to provide a comprehensive analysis of the roadway network in the State of Texas.  28 
 29 
An NB model is used to identify major factors influencing pedestrian crashes at intersection and 30 
midblock levels. Models for the State of Texas are developed along with a case study of the City 31 
of Austin, one of the areas with the highest number of crashes in the state, to understand specific 32 
factors affecting the city’s crash rate. The main results suggest that signalized intersections present 33 
a higher pedestrian crash rate, DVMT increases the likelihood of pedestrian crashes, and midblock 34 
segments are more vulnerable, where one standard deviation increase causes an increase in crashes 35 
at intersections and midblock sections of 52% and 187%, respectively. Variables such as the 36 
number of lanes and lane width contribute to higher pedestrian crash rates, while higher posted 37 
speed limits and longer median widths tend to coincide with a reduced crash rate. Arterial roads 38 
are prone to have a higher number of pedestrian crashes than local and collector roads. Land use 39 
variables indicate that areas with a greater population tend to have more crashes. The analysis of 40 
the Austin area suggests that the CBD is critical for both models, with midblock crashes being 41 
more sensitive (240%) in this area than intersection (78%) crashes. Also, a significant inequity 42 
was also found in the area: an increase of $41,000 in average household income leads to a reduction 43 
of 32% (intersections) and 39% (midblock) in pedestrian crash rates. 44 
 45 
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The pedestrian crash data used in this study, obtained from the TxDOT CRIS database, only 1 
includes records from police officers, which limits this study to the analysis of only the recorded 2 
crashes. Other limitations of this study include the approximate map-matching process used to 3 
obtain the geometry characteristics for both intersections and midblock segments, based on the 4 
TxDOT roadway inventory. However, the developed analysis contains detailed intersection and 5 
midblock segment information not used in prior research; to the best of the authors’ knowledge, 6 
the most complete set of intersections currently available at the state level is utilized for this type 7 
of analysis. Researchers provide the intersection and uniform roadway segment sets online at 8 
https://github.com/ut-ctr-nmc/peds-midblocks-intersections. 9 
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