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ABSTRACT 1 

As ride-hailing becomes a more prevalent mode in cities and the effect of this increased demand 2 

on fixed infrastructure manifests itself, authorities are seeking data-sharing agreements with 3 

transportation network companies (TNCs) or trusted third-parties to understand the spatial and 4 

temporal variation in demand of this emergent mode to enact sound regulations. Although rider-5 

specific demographic information is unavailable to researchers due to privacy concerns, publicly 6 

available data of masked trips, like Chicago’s transportation network provider data, in combination 7 

with census tract-level built environment and socioeconomic variables can yield valuable insights 8 

into trip-making, particularly the factors contributing to sharing. Effective sharing of TNC trips 9 

will increase vehicle occupancy, thereby reducing overall passenger miles traveled and improving 10 

traffic conditions and per-passenger mile emissions. This study uses spatial econometrics to 11 

understand and predict sharing based on built environment, socioeconomic, location, time, and trip 12 

factors in Chicago, Illinois. Areas with a high density of retail and entertainment jobs, multi-modal 13 

infrastructure, and a young population have a strong positive effect on shared TNC trip origin 14 

counts. Moreover, regions that have longer TNC trips tend to have higher rates of sharing, but the 15 

same cannot be said for longer work commutes or higher trip fares. Lastly, the ratio of shared TNC 16 

trips to total trips declined across the average tract in 2019 and incentivizing shared trips during 17 

periods of high leisure trips (i.e., weekends) and in areas with well-educated residents may help to 18 

reverse this trend.  19 

 20 

Keywords: ride-hailing, sharing, spatial econometrics, spatial regression 21 

BACKGROUND 22 

In the last decade, the growth of on-demand ride-hailing (also referred to as ridesourcing or 23 

transportation network company (TNC) services), that matches drivers with passengers using 24 

smartphone apps and advanced routing algorithms, has led to spillover effects across the urban 25 

transportation system. TNCs are known to have a considerable impact on regionwide emissions, 26 

congestion, transit ridership, household vehicle ownership decisions, and trip behavior. Increasing 27 

average vehicle occupancy is critical in reducing congestion and per-passenger mile emissions, 28 

and the choice for riders to share their TNC trip2 could lower their impacts (Shaheen and Cohen, 29 

2019; Sperling, 2018). Yet, research guiding policy-making decisions on shared TNC rides is still 30 

in its infancy even though TNCs in the U.S. launched shared ride services in 2014. 31 

Numerous studies document the differences of shared mobility services (Shaheen and 32 

Cohen, 2019; Chan and Shaheen, 2012), the factors influencing their adoption and demand (Alemi 33 

et al., 2018; Dias et al., 2017; Lavieri and Bhat, 2019; Yu and Peng, 2019), and studies answering 34 

how ride-hailing impacts traditional transit ridership (Clewlow and Mishra, 2017; Schwieterman 35 

and Smith, 2018), but very few have examined shared trips exclusively. A reasonable explanation 36 

is that shared rides form a small percentage of ride-hail trips, about 19% of trips in Hangzhou, 37 

China, 20% in Chengdu, China, and up to 22% of passenger miles traveled in California (Chen et 38 

al., 2018, p. 18; Zheng et al., 2019, p. 147; CARB, 2019, p. 1). Additionally, TNC trips constitute 39 

a fraction of a household’s transportation budget. In the 2017 National Household Travel Survey, 40 

only 8% of respondents took a ride-hail trip in the previous month (FHWA, 2019). Furthermore, 41 

few datasets track if a shared trip was successful (i.e., when passengers were matched with other 42 

unrelated passengers). Still, a larger barrier to this field of research is the aversion of TNCs to 43 

 
2 Given multiple definitions in the literature, “sharing”, where passengers are willing to travel with strangers to split 

the fare at the cost of additional travel time (in-vehicle and out-of-vehicle), is equivalent to pooling, ridesplitting, and 

dynamic ride-sharing (DRS). 
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share trip data without significant data aggregation measures due to privacy concerns. Naturally, 1 

only a few studies have investigated trends in shared TNC rides using surveys and real-world trip 2 

data – most leveraging DiDi Chuxing data. 3 

 4 

Literature Review 5 

Chen et al. (2017) employed Boosting ensemble learning, a machine learning technique that 6 

combines multiple base models, to create a strong classification model that predicts sharing of 7 

potential ride-hail customers based on ride-hail features such as trip length, fare, and trip time 8 

reliability. They reported better ride classification using this technique than logistic regression, 9 

support vector machine, and naïve Bayes classification. Chen et al. (2018) extended this 10 

preliminary analysis to real-world DiDi Express and Hitch ridesplitting data, and a post-ride 11 

questionnaire to study the reported mode shift to shared TNC rides and estimate vehicle miles 12 

traveled (VMT) savings. They estimated a savings of slightly more than 36,000 VMT per day 13 

(which seems insignificant for a city of 10 million). Their methodology assumes that a passenger 14 

would have ordered a more expensive, non-shared DiDi service had the sharing option been 15 

unavailable or outside their time budget. However, a survey from the Union of Concerned 16 

Scientists (2020) found that 36% of shared trips would have been taken by transit, active 17 

transportation, or foregone had ride-hail not been available, 15% by taxi, 21% by carpool, and 18 

24% by driving alone. Additionally, the study used the Hitch ride-sharing service, which is more 19 

analogous to carpooling since users can schedule a ride in advance, confounding the on-demand 20 

shared TNC focus of this study. 21 

 Li et al. (2019) analyzed a one-month sample of trip data from DiDi Express in Chengdu, 22 

China, and estimated only 6.2% of trips are successfully shared and that 90% of these trips are 23 

between two unrelated parties. As a result, shared trips had a 22% savings in total vehicle service 24 

hours compared to single-party trips. The authors developed a regression analysis using density, 25 

development, and diversity of land use factors to tease out both the correlation between the spatial 26 

demand for TNCs and the built environment and shared TNC trip delays and the built environment. 27 

High density and more economic development of a census tract has a strong positive effect on the 28 

count of TNC rides, perhaps because of increased opportunities and better road infrastructure, but 29 

increases in diversity of land use are negatively associated with TNC trips. Furthermore, proximity 30 

to bus stops is positively correlated with delays in shared rides. Diversity of land use at the pickup 31 

and drop-off area has the same correlation, perhaps because of wayfinding issues.  32 

Zheng et al.  (2019) surveyed recent DiDi Express and Hitch customers in Hangzhou, 33 

China, to investigate the influence of TNC sharing on vehicle usage and ownership. Interestingly, 34 

sharing had the effect of removing 3.6% of the region’s vehicles from the road, daily, but the 35 

survey did not ask respondents about their willingness to use their personal automobile had 36 

ridesharing not been available. The authors also estimated that more than a fifth of respondents 37 

postponed their plan to purchase a new vehicle after the emergence of shared ride-hail services, 38 

particularly for households currently without a vehicle. 39 

 Hou et al. (2020) explored the socioeconomic, spatiotemporal, and trip-specific factors that 40 

influence one’s willingness to share. Their study binned Chicago TNC trips between November 41 

2018 and April 2019 by census tract origin-destination pairs, time of day (in five discrete 42 

categories), weekend, airport trip pick-up, and airport trip drop-off indicator variables and used 43 

bins with at least 100 trips. This study used an ordinary least squares (OLS) model and a decision-44 

tree-based ensemble machine learning algorithm called XGBoost to predict sharing. They found 45 

that increases in trip distance and duration and the price differential with shared services between 46 
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locations (all else constant) increase a tract’s ratio of shared trips. Additionally, trips to and from 1 

airports representing time-constrained trips lead to decreases in sharing. Similarly to Chen et al. 2 

(2017), the machine learning technique outperformed their OLS specification. 3 

In this study, we explore the effect of built environment, socioeconomic, spatial-temporal, 4 

and trip factors on the demand for shared TNC trips by first approaching this topic with spatial 5 

econometric techniques. This is novel as previous studies have not modeled the spatial demand of 6 

shared TNC trips as observed in studies of other modes and services (Yu and Peng, 2019 (TNCs); 7 

Reck et al., 2020 (e-scooters); Becker et al., 2017 (car-sharing); Ma et al., 2018 (transit)). The 8 

results of this analysis can inform policy to incentivize sharing in the short-term and promote 9 

lasting land use changes that encourage sharing behavior in transportation modes. The remaining 10 

sections of this paper are organized as follows – explanation of the data sources and summary 11 

statistics; a review of spatial econometric models; implementation of the spatial econometric 12 

models and concluding remarks.  13 

 14 

DATA DESCRIPTION 15 

Since November 2018, the City of Chicago has maintained an online portal of ride-hail trips 16 

provided by licensed TNC vendors, totaling 152 million records (as of May 28, 2020). To maintain 17 

the privacy of sensitive transportation data in the public domain, Chicago masks individual records 18 

temporally, spatially, and financially. Trip start and end timestamps are rounded to the nearest 15 19 

minutes, pickup and drop-off information is aggregated to the census tract level, or suppressed in 20 

some cases, and fares are rounded to the nearest $2.50 (Levy, 2020). Trips were obtained for the 21 

entire year of 2019 to account for temporal variations in TNC demand, such as seasonal or holiday 22 

effects. A random non-replacing sampling approach for each month scaled the total number of 23 

trips down by a factor of 10. Raw trip records were scrubbed to remove erroneous trip records such 24 

as those that have incomplete pickup/drop-off location data, temporal data, trip distance, and trip 25 

duration resulting in semi-truncated data beyond what is provided by Chicago. The full list of 26 

measures is given below: 27 

1) Duration is greater than 60 seconds 28 

2) Distance is greater than 0.1 miles 29 

3) Fare is not $0 and is less than $100 30 

4) Pickup/dropoff tract is not blank & both are in Chicago 31 

5) Trip Start Timestamp is after 12/31/2018 11:59:59 PM & before 01/01/2020 12:00:00 AM 32 

 33 

As an example, in January 2019 (before sampling) there were 5.87 million trips taken in 34 

Chicago meeting these criteria. Almost 23% of all trips were taken with a shared service, lower 35 

than the 25.8% that Hou et al. (2020) found over five months (November 2018 – March 2019) 36 

with the same dataset. Of those rides taken with the option to share, 75.0% were successful, defined 37 

as two or more consecutive unrelated parties (of unknown size) sharing a ride during a period when 38 

there were always passengers in the vehicle3.  39 

Socioeconomic data were obtained from the U.S. Census Bureau’s American Community 40 

Survey (ACS) 2014—2018 (5-Year Estimate) followed by 2013–2017 (5-Year Estimate) if the 41 

latest data was not available for census tracts. Similarly, built environment data were obtained 42 

from the EPA Smart Location Database for the Chicago metropolitan region, and data was matched 43 

by census tract.  44 

 
3 This study examined shared TNC trips (as a service type) to estimate the spatial demand for this mode. 
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The majority of TNC trips are short in duration and distance. A histogram shown in Figure 1 

1a reveals an exponential decline in trip duration roughly after the 10-minute mark. Figure 1b 2 

depicts an exponential decline of trip distance after two miles. Additionally, shared services are 3 

more likely to be taken midweek than during the weekend, with a lower proportion of sharing 4 

occurring on Saturdays (Figure 2). In addition to temporal variation, there is also significant spatial 5 

distribution in the rate of sharing. While there is high variation in the rate of shared trips by pick-6 

up census tract (Figure 3a) for the January 2019 subset, the total number of average daily shared 7 

trips is largest in the central business district (CBD) (Figure 3b). Unsurprisingly, areas with higher 8 

trip generators have the highest number of shared trips, but the clustering of tracts with high and 9 

low ratios of sharing implies a strong positive spatial dependence on the rate of shared trips.  10 

A descriptive statistics table for the average socioeconomic, built environment and trip 11 

factors by census tract for the January 2019 subset is shown below in Table 1. There are pockets 12 

of extreme wealth and poverty, as measured by median annual household income, owner-occupied 13 

median house value, and percent unemployment. The average tract is majority-minority (54.01% 14 

nonwhite) and young (32.31% of the population aged 18-34). Nearly a third of Chicago’s 15 

population aged 25 years and above has a bachelor’s degree with some tracts reaching nearly 16 

100%. With an average tract population density of over 19,000 people per square mile, the 17 

availability of other transportation modes associated with high density areas can increase the rate 18 

of voluntary zero-vehicle households that would otherwise be negatively correlated with low 19 

incomes. The socioeconomic variation across tracts is also a function of the built environment – 20 

years of (dis)investment, zoning laws, and suburban sprawl has created pockets of high population 21 

and employment density (in retail and entertainment industries), multi-modal infrastructure, and 22 

transit. These socioeconomic and built environment factors, as suggested in the literature, may 23 

help to explain the observable count of shared TNC trips.   24 

 25 

 26 
FIGURE 1 Histogram of trip durations and trip distance for a January 2019 subset 27 

 28 
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 1 
FIGURE 2 Count of TNC trips by service type for a January 2019 subset 2 

  3 

           4 
FIGURE 3 Average daily percent and total shared rides by pick-up for the January 2019 subset 5 

TABLE 1 Descriptive Statistics by Census Tract for January 2019 Subset (N=772) 6 
Variable Label Min Max Mean SD Median Source 

HHSIZE Average Household 

Size 

1.34 4.5 2.64 0.60 2.62 

ACS 

2014-

2018,  

ACS 

2013-

2017 

(5-Yr 

Est.) 

HH_INCOME Median Household 

Income (1,000$) 

9.79 178.75 57.96 32.40 48.63 

HOUSE_VALUE Median Value of 

Owner-Occupied 

Dwellings (1,000$) 

53.80 868.40 266.57 151.08 227.20 

PCT_NONWHITE Percent Nonwhite 

Population 

3.30 100.00 54.01 32.31 48.62 

PCT_AGE18TO34 Percent Population 

Ages 18-34 

10.23 86.60 29.86 11.63 26.51 

PCT_BACHELORS Percent Population 

Ages 25 and Over 

with at least a 

bachelor’s degree 

0.51 94.95 36.19 26.19 28.63 

A B 
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PCT_VEH0 Percent Zero-

Vehicle Households 

0.00 80.85 36.33 16.78 35.58 

POP_DENS Population Density 

(1,000 people per 

square mile) 

0.46 263.99 19.11 15.77 16.10 

PCT_UNEMPLOYED Percent 

Unemployed 

0.00 48.47 10.77 8.54 7.94 

COMMUTE Average Work 

Commute (minutes) 

17.00 53.00 35.64 5.54 36.00 

MILES Trip Distance 

(miles) 

2.11 18.04 5.50 1.74 5.26 

Chicago 

TNC 

Dataset 

for 

Jan. 2019  

MINUTES Trip Duration 

(minutes) 

5.41 38.69 18.47 3.87 18.13 

FARE Trip Fare ($) 2.50 22.50 9.75 1.93 9.32 

TOTALCOST Total Trip Cost ($) 5.05 27.55 12.52 2.16 12.03 

TRIPS_SHARED Average Number of 

Consecutively 

Shared Trips 

1.00 3.00 1.50 0.25 1.48 

SHARED Fraction of Trips 

with Shared Service 

0.00 1.00 0.38 0.16 0.38 

SHARED_CNT Count of Shared 

Trips 

0.00 6,080 161.04 373.48 55.00 

WEEKEND Indicator for 

Weekend 

0.00 1.00 0.28 0.11 0.28 

DENS_ENTER Gross Entertainment 

Employment 

Density (jobs/acre) 

0.00 90.01 1.70 6.73 0.24 

EPA 

Smart 

Location 

Database 

(2014) 

DENS_RET Gross Retail 

Employment 

Density (jobs/acre) 

0.00 55.77 1.07 3.36 0.29 

NTWKDENS_MM Network Density of 

multi-modal links 

(miles/sq. mile) 

0.00 21.08 3.25 2.45 2.93 

DIST_TR Distance from 

population-

weighted centroid to 

nearest transit stop 

(meters) 

0.00 1,033.64 510.73 160.59 517.10 

FRQ_TR Aggregate 

frequency of transit 

service per square 

mile 

71.58 84,441.17 3,085.36 5,055.51 1,985.11 

 1 

DEVELOPMENT OF A MODEL 2 

A model to estimate the sharing decision in TNC trips as a function of socioeconomic, built 3 

environment, temporal, and trip-specific variables is proposed. The Y variable is either a 4 

proportion or count variable of shared trips with census tract data for all X variables. Two models 5 

are developed because although a higher count of shared trips may be associated with a higher rate 6 

of shared trips, Figure 3 dispels this general notion. As sharing is offered only in select markets 7 

where the density of trip generators/attractions exists to match riders to vehicles, associating built 8 

environment density variables may allow for a better predictive model (Yu and Peng, 2019). Due 9 

to privacy concerns, trip spatial data is aggregated to census tracts, which can introduce spatial 10 

autocorrelation (Wang et al., 2013). Thus, a model that supports a likely spatiotemporal 11 
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phenomenon in sharing choice behavior should be conducted, especially since prior work in taxi 1 

trip models shows spatial autocorrelation exists (Correa et al., 2017) 2 

The choice to split a ride can be reasonably estimated using multiple models, borrowed 3 

from studies on crime data, crashes, and the spread of diseases. According to Lord and Park (2013), 4 

a Poisson-Gamma (NB) can capture spatial data with a spatial autocorrelation term for each 5 

observation. The resulting non-negative mean of the model is 𝜆𝑖 = 𝑒𝑋𝑖
′𝛽+𝜀𝑖+𝜙𝑖 , where spatial 6 

autocorrelation, 𝜙, is parameterized. A downside of these spatial interaction models (e.g., 7 

Conditional Auto-Regressive [CAR] Model) is that it cannot be estimated by Maximum 8 

Likelihood Estimation (MLE) but with more computationally intensive processes such as the 9 

Markov Chain Monte Carlo (MCMC) or Integrated Nested Laplace Approximation (INLA) 10 

(Khana et al., 2018). A different approach to expressing spatial dependencies in a regression model 11 

that yields similar results is to have explicit spatial variables as opposed to the above parameter 12 

approach (Levine et al., 2013). Examples of spatial relationship variables include the distance to 13 

the CBD, area of a zone (e.g., census tract or traffic analysis zone), or a distance-weighted value 14 

reflecting adjacency with zones (e.g., impedance). While Waldo Tobler’s First Law of Geography 15 

holds true (i.e., near zones are more related than distant zones ceteris paribus), this approach 16 

requires zonal independence and uniformity intra-zone, which cannot necessarily be guaranteed. 17 

The best model is ultimately the one that captures the shared choice behavior in the simplest means 18 

possible. 19 

One approach is to ignore temporal variation, at first, and test for spatial dependence of the 20 

data. This involves estimating the rate of sharing in TNC trips by ordinary least squares (OLS) 21 

regression while assuming there is no spatial autocorrelation, or rather there is no correlation in 22 

the rate of shared ride-hail trips in space (Cliff and Ord, 1973). Spatial autocorrelation has the 23 

general condition: 𝐶𝑜𝑣(𝑦𝑖, 𝑦𝑗) ≠ 0𝑓𝑜𝑟 𝑖 ≠ 𝑗 for all y observations at locations i and j, and has 24 

been simplified in econometric work to a spatial weights matrix which measures the interactions 25 

with neighboring census tracts (Ignacio Sarmiento-Barbieri, n.d.). Recalling Tobler’s Law, 26 

neighbors can be defined to include tracts that are within a set distance (such as 30 minutes of 27 

travel time by car), nearest k neighbors, or a simple queens (side and edge included) and rooks 28 

(side only) rule spatial matrices. A test for spatial autocorrelation is Moran’s I test (Moran, 1950), 29 

which is produced using a vector of OLS residuals and a row of standardized spatial weights matrix 30 

by means of standardizing the spatial autocovariance.  31 

Since the results are relative to the modeler’s choice of a spatial weights matrix, different 32 

results may apply to different inputs. If the Z-value from Moran’s I test is statistically significant 33 

(at α = 0.05, for example), then the null hypothesis that sharing is randomly distributed across 34 

Chicago can be rejected, implying that there is significant spatial autocorrelation. If indeed the 35 

results from Moran’s I test indicate a valid alternative hypothesis, two spatial lag models may 36 

sufficiently capture the effect of spatial dependence on sharing – the spatial autoregressive model 37 

(SAR) and the spatial error model (SER). SAR introduces the spatial weight matrix similarly to 38 

the endogenous variables like trip, socioeconomic, and built environment variables (𝑦 = 𝜌𝑊𝑦 +39 

𝑋𝛽 + 𝜖)4 whereas SEM incorporates the spatial weights matrix in the error term (𝑦 = 𝑋𝛽 + 𝜖, 40 

where 𝜖 = 𝜆𝑊𝜖 + 𝑢) (Millo, 2014). An implication of these two approaches is that they yield two 41 

different conclusions for the OLS model if SAR or SEM is an appropriate model (i.e., a spatial 42 

residuals plot does not appear to show a presence of spatial autocorrelation). A SAR model 43 

 
4 Subscripts dropped for brevity 
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specification implies biased and inconsistent estimates, while the SEM model would imply 1 

unbiased but inefficient estimates of the OLS model.  2 

To include the temporal distribution in ride-hailing behavior, including seasonal variations 3 

because of Chicago’s climate, a regression on panel data is done. A basic linear panel model has 4 

both cross-sectional invariant variables and variables that vary over both cross-section, i¸ and time, 5 

t, and error terms (𝑦 = 𝛼 + 𝑋1,𝑡𝛽1 + 𝑋2,𝑖𝑡𝛽2 + 𝑢𝑖𝑡) (Srinivasan and Kockelman, 2002). Since this 6 

study samples trips by month for 2019 (t = 1 to 12), the number of cross-sections (census tracts) 7 

varies and results in an unbalanced panel (Figure 4). With this panel data, two model specifications 8 

were developed based on assumptions of correlation across census tracts with the regressors. The 9 

error term can be formulated as constant across census tracts (fixed effects) or assumed to be 10 

randomly distributed with a variance of 𝜎𝑢
2 (random effects). Intuitively, random effects may be 11 

more aptly suited for this work, as it allows for variation in sharing behavior across census tracts 12 

and even months to follow expected behavior shown in Figures 3a and 3b; but the chosen 13 

specification should be determined using an appropriate statistical test, like Hausman (Greene, 14 

2003, p. 301). The Hausman test (Hausman, 1978) determines if the underlying data supports 15 

random effects by assuming a null hypothesis of no correlation with the regressors (such that fixed 16 

effects is an inefficient estimator). If the resulting p-value of the test is statistically significant, the 17 

conclusion is that the random effects estimator is inconsistent, and thus fixed effects is a better 18 

model. Additional model specifications such as the time-fixed effects model may be necessary to 19 

capture variation in TNC trip variables (e.g., distance, duration, and fare) if correlation is found. 20 

Lagrange Multiplier for time effects can provide guidance on which model specification best 21 

explains the data. 22 

A limitation of the previous approach is that it fails to capture any spatial interactions across 23 

the individual cross-sectional units (i.e., census tracts) and over time. Hence, a balanced spatial 24 

panel data model of 763 census tracts was developed for the count data with just eight tracts 25 

dropped across the City to estimate these spatial interactions, as suggested in Millo and Piras 26 

(2012). Both random and fixed effects models with an added spatial autoregressive error term are 27 

developed, and a spatial Hausman test (Mutl and Pfaffermayr, 2011) is conducted to determine 28 

which specification is more appropriate. The models are estimated with generalized moments, 29 

although maximum likelihood is also possible but at a cost of computational time. A random 30 

effects model with serially correlated remainder errors and a spatial autoregressive term is then 31 

used to compare with the previously estimated RE specification (see (Millo, 2014) for further 32 

model taxonomies and a commentary on their development). A generalized flowchart of these 33 

model specifications for both the ratio of shared trips and count of shared trips is shown in Figure 34 

5. 35 

 36 

 37 
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FIGURE 4 Number of census tracts in the unbalanced panel dataset for 2019 by month 1 

 2 
FIGURE 5 Generalized model specification flowchart 3 

RESULTS 4 

Ratio of Shared Trips 5 

The final OLS specification for the ratio of shared trips is presented in Table 2 below, indicating 6 

that built environment variables are not beneficial in predicting the rate of sharing in a census tract. 7 

On the other hand, socioeconomic variables and trip length were statistically significant. Trip 8 

duration had the largest t-statistic; however, fare and distance could also be used but were not 9 

included because of multicollinearity. There were five different spatial weight matrices: two 10 

contiguity-based (queen and rook criterion), and three closest k neighbors (k=3, 4, 5). All spatial 11 

weight matrices yielded a p-value significantly lower than 0.05 with Moran’s I test. The rook 12 

criterion had the lowest p-value and was chosen for the subsequent spatial regressive models. This 13 

indicates the null hypothesis can be rejected in all circumstances and that significant spatial 14 
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autocorrelation between census tracts is evident in the OLS model. A subsequent Lagrange 1 

Multiplier diagnostic for spatial dependence confirmed this conclusion. 2 

Two spatial regressive models, SAR and SEM, with the same independent variables as in 3 

the OLS model were estimated to test whether accounting for spatial autocorrelation improved the 4 

fit of the model. The last two columns of Table 2 present the results for these two spatial regressive 5 

models. The log-likelihood (LL) of the SEM model is lower than SAR, and a plot of residuals for 6 

SAR (Figure 6a) and SEM (Figure 6b) shows there is still some autocorrelation not accounted for 7 

in these models, predominately in Chicago’s South Side and northwest leading to O’Hare 8 

International Airport. This suggests that residual autocorrelation is present and advanced spatial 9 

econometric models may be necessary. Nevertheless, the results from the SEM model of the OLS 10 

specification imply that census tracts with higher rates of sharing have longer TNC trips, which 11 

would allow for TNC to better match riders (hopefully avoiding poor matches) and would allow 12 

riders to split the higher fare. Areas with a high percentage of nonwhite residents and unemployed 13 

residents have a similar effect on increasing the proportion of shared trips to total trips. Moreover, 14 

these variables may indirectly account for wealth disparities that increase ridesplitting behavior. 15 

Additionally, areas with high average household sizes tend to have higher rates of sharing, which 16 

may suggest that individuals in larger households are more comfortable with sharing rides with 17 

strangers, an effect of intrahousehold sharing. Noticeably, tracts with a higher percentage of the 18 

population having a bachelor’s degree tended to have lower sharing. Since this variable only 19 

considers the population of residents ages 25 and over, it fails to count current university students, 20 

who are more willing to share rides. 21 

 22 

TABLE 2 Final OLS, SAR, and SEM Models for the Ratio of Shared Trips in January 2019 23 
 OLS Model  SAR Model  SEM Model 

 Coefficient t-stat  Coefficient Z-value  Coefficient Z-value 

CONSTANT 2.12E-01 4.53  1.24E-01 2.70  2.09E-01 4.33 

MINUTES 4.01E-03 3.28  3.62E-03 3.09  4.90E-03 3.87 

WEEKEND -8.93E-02 -2.29  -4.21E-02 -1.09  -4.90E-02 -1.25 

PCT_NONWHITE 1.67E-03 8.17  1.20E-03 5.78  1.70E-03 7.25 

PCT_BACHELORS -1.50E-03 -5.20  -9.95E-04 -3.52  -1.52E-03 -4.78 

PCT_UNEMPLOYED 2.16E-03 3.05  1.67E-03 2.47  1.81E-03 2.47 

HHSIZE 2.13E-02 2.30  1.21E-02 1.38  1.28E-02 1.27 

 n    772  n 772  n 772 

 Radj
2  0.56  LL 668.20  LL 659.50 

    AIC -1318.4  AIC -1301.0 

 24 

An unbalanced panel dataset for the entire year contains 9,296 observations (ranging from 25 

772 to 778 census tracts with data for 2 to 12 months, a result of the sampling approach to handling 26 

the large amount of raw data). The base OLS specification from above is utilized to test for fixed 27 

effects (FE) and random effects (RE). Under fixed effects, the model controls for possible biases 28 

in predicting shared trips within census tracts, a valid assumption given that the time-invariant 29 

variables (e.g., socioeconomic and built environment) are unique to each tract, even though they 30 

are correlated across space. However, a fixed effects model assumes that a census tract’s error 31 

term and individual-specific constant will not be correlated with others. Given that sharing exhibits 32 

some spatial dependence, the assumptions of fixed effects may not be suitable, and thus a random 33 

effects model was also developed.  34 
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To understand which approach was more suitable for the panel data, the Hausman test was 1 

used with a null hypothesis that the individual effects are not correlated with the regressors in the 2 

model (hence random effects methods are preferred). The resulting p-value from this test is 3 

statistically significant, implying that the fixed effects model is the better choice. As the fixed 4 

effects model rejected all variables that were constant within the zones, leaving only average trip 5 

variables (e.g., trip fare, trip miles, and trip minutes), a time-fixed effects model accounting for 6 

variation across the months of the year was employed to predict the ratio of shared trips and to 7 

account for the decline in the ratio of shared trips (Table 3). The time-fixed effects model is a 8 

better choice for predicting the ratio of shared trips by tract, as determined by a Lagrange 9 

Multiplier test for time effects. 10 

 11 

         12 
FIGURE 6 Plot of residuals from SAR and SEM models on January 2019 subset 13 

 14 

TABLE 3 Fixed Effects and Time-Fixed Effects Model for Ratio of Shared Trips on 2019 Panel 15 

 Fixed Effects Time-Fixed Effects 

 Coefficient t-stat Coefficient t-stat 

MINUTES 5.40E-03 12.04 5.17E-03 13.92 

January (base)     

February   -2.72E-02 -6.32 

March   -3.51E-02 -8.15 

April   -4.31E-02 -9.99 

May   -6.48E-02 -14.95 

June   -9.83E-02 -22.61 

July   -1.18E-01 -27.27 

August   -1.36E-01 -31.56 

September   -1.52E-01 -35.24 

October   -1.70E-01 -39.49 

November   -1.75E-01 -40.66 

December   -1.64E-01 -38.13 

Radj
2  -0.07  0.31  

 16 

 17 

A B 
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Count of Shared Trips 1 

The final OLS specification for the count of shared trips is presented in Table 4 below, indicating 2 

that built environment and socioeconomic variables can significantly explain the count of shared 3 

trips. Similarly to the ratio model, the lowest p-value from Moran’s I test came from using the 4 

rook criterion spatial weight matrix and the null hypothesis could be rejected. As there is no direct 5 

equivalency of a SAR and SEM model for count data (see Glaser (2017) for a full discussion on 6 

spatial regressions of count data), a panel data approach was taken to accommodate temporal 7 

variation in trip. 8 

 9 

TABLE 4 Final OLS Model for the Count of Shared Trips in January 2019 10 
 Coefficient t-stat 

CONSTANT 3.73E+02 3.09 

FARE -1.10E+01 -1.91 

WEEKEND -2.91E+02 -2.95 

HHSIZE -7.47E+01 -4.01 

POP_DENS (1,000/SQ MI) -1.69E+00 -2.40 

PCT_AGE18TO34 6.72E+00 6.09 

HH_INCOME ($1,000) 1.50E+00 4.01 

COMMUTE -6.25E+00 -3.03 

DENS_ENTER 1.32E+01 6.22 

DENS_RET 1.60E+01 3.95 

NTWKDENS_MM 3.11E+01 7.36 

n 772  

Radj
2  0.49  

 11 

When accounting for temporal variation of shared trip making in TNCs, the magnitude of 12 

the results changes, but the direction (i.e., positive and negative) relationship between each 13 

predictor and the outcome remains the same. An unbalanced panel dataset for the entire year was 14 

used to develop both a fixed effects and random effects model for the count of shared trips. The 15 

Hausman test was used with the same null hypothesis as before (i.e., individual effects are not 16 

correlated with the regressors in the model).  The resulting p-value is not statistically significant, 17 

implying that the random effects model is the better choice (even though the model has a very poor 18 

adjusted R2 value). Table 5 presents the results for the random effects model predicting the count 19 

of shared trips. The interpretation of the coefficients is difficult as it includes both within-tract 20 

effects due to changes in TNC behavior and between-tract effects (i.e., the average effect of X over 21 

Y when X changes over time and between tracts by one unit). For example, tracts with a higher 22 

density of retail and entertainment jobs per acre have a strong positive effect on shared trip-making 23 

as do those with a high density of linear miles of multimodal infrastructure. Interestingly, increased 24 

population density generally reduces the count of shared trips, but its possible interaction with the 25 

other job-oriented density terms is left unexplored.   26 

 27 

TABLE 5 Final Panel Model with Random Effects for the Count of Shared Trips in 2019 28 
 Coefficient Z-value 

CONSTANT 1.44E+02 1.91 

WEEKEND -2.93E+00 -3.81 

HHSIZE -4.23E+01 -3.12 

POP_DENS (1,000/SQ MI) -2.93E+00 -3.81 
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PCT_AGE18TO34 4.94E+00 6.71 

HH_INCOME ($1,000) 6.87E-01 2.83 

COMMUTE -4.76E+00 -3.39 

DENS_ENTER 9.99E+00 6.73 

DENS_RET 9.17E+00 3.24 

NTWKDENS_MM 2.17E+01 7.47 

FRQ_TR 5.83E-03 2.26 

HOLIDAY 2.42E+02 8.12 

n 772-778  

Radj
2  0.08  

 1 

Although the panel model in Table 5 considers between-tract effects, the spatial 2 

dependence of shared TNC trips is not captured. Hence, a balanced spatial panel data model of 3 

763 census tracts followed to reflect these spatial interactions using a rook criterion contiguity 4 

spatial weights matrix. Both fixed effects and random effects were developed after adding a spatial 5 

autoregressive error term, but not an additional lag dependent variable. The spatial Hausman test 6 

comparing the two types resulted in an insignificant p-value of 0.178, revealing that the random 7 

effects model is preferred. Table 6 below presents the specification of this preferred random effects 8 

model by generalized moments (GM). This model is then compared to one developed through 9 

maximum likelihood (ML) with serial error correlation and a spatial lag dependent variable. The 10 

spatial autoregressive component, 𝜆, for this new model type is statistically significant (t-stat of 11 

26.07), but 𝜙, the “ratio of the random effect’s to the idiosyncratic error’s variance,” is about 0, 12 

meaning no random effect is truly present (Millo, 2014). The random effects assumption is 13 

removed, but the autoregressive serial correlation and spatial lag parameters are kept (Fixed 14 

Effects - ML), showing that the magnitude and sign of the coefficients largely do not change; but 15 

given the results of the Hausman test, the “Random Effects – GM”  is the most appropriate spatial 16 

linear panel count model. 17 

 18 

TABLE 6 Spatial Panel Model with Random and Fixed Effects for Count of Shared Trips 19 

 Random Effects - GM Random Effects - ML Fixed Effects - ML 

 Coefficient t-stat Coefficient t-stat Coefficient t-stat 

CONSTANT 2.74E+01 0.42 3.69E+01 0.53 3.49E+01 0.51 

FARE -2.12E+00 -2.56 -6.89E-01 -2.59 -6.90E-01 -2.60 

POP_DENS (1,000/SQ MI) -3.29E+00 -4.25   -1.47E+00 -2.67 

PCT_AGE18TO34 5.32E+00 7.28 5.11E+00 6.66 5.82E+00 7.20 

HH_INCOME ($1,000) 8.23E-01 3.33     

COMMUTE -4.45E+00 -3.09 -5.90E+00 -3.70 -5.64E+00 -3.55 

DENS_RET 9.91E+00 3.52 1.18E+01 3.66 1.27E+01 3.95 

DENS_ENTER 9.61E+00 6.40 1.03E+01 6.12 1.06E+01 6.34 

NTWKDENS_MM 2.17E+01 7.45 2.32E+01 6.98 2.27E+01 6.82 

FRQ_TR 8.34E-03 3.43     

HOLIDAY 1.95E+02 5.40     

 𝜌 = 0.300 

𝜎𝑣
2 =9.62E+03 

 λ = 0.328 

𝜙 =1.00E-08 

𝜓 = 9.82E-01 

 λ = 0.329 

𝜓 = 9.82E-01 

 

 20 

 21 
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CONCLUSION 1 

The inclusion of density-specific and transit-oriented built environment variables in explaining the 2 

count of sharing was significant when examining the change in behavior both across time and 3 

space through a panel econometric approach. When isolating a specific period (e.g., January 2019) 4 

and investigating the spatial autocorrelation of the rate of shared trip making, only trip length and 5 

socioeconomic variables at the census tract level were significant predictors, both in SAR and 6 

SEM specifications. Considering the spatial correlation across neighboring tracts, a random effects 7 

model with a spatial autoregressive error term is a better fit than one with an additional spatial lag 8 

dependent term. Additionally, all count models appear to be best explained through random 9 

effects, while a time-fixed effects model best describes the ratio model for shared trips. 10 

The results tend to indicate that longer TNC trips are a key indicator to the rate of sharing, 11 

while the cost of the ride has a negative relationship with the count of sharing by census tracts 12 

(although wealth disparities in areas of high unemployment and nonwhite residents may indirectly 13 

suppress the effects of increased fares on sharing). Operationalizing the fair incentive may be 14 

useful but requires studying sharing between origin-destination tracts and not pick-up tracts. 15 

Increasing average vehicle occupancy for long-distance trips can lead to sizeable decreases in 16 

vehicle emissions and on-road congestion and policymakers should further promote sharing to 17 

maximize these benefits. Areas with higher multimodal networks and employment for the retail 18 

and entertainment industries also exhibit higher counts of shared trips, while increased transit 19 

frequency leads to a significant but less substantial increase in shared rides, likely because transit 20 

competes for riders who would otherwise use a shared TNC service. Additionally, the share of 21 

riders taking a shared service (whether it was successfully shared or not) decreased throughout the 22 

year, necessitating further exploration to determine if TNC riders have become less willing to share 23 

rides, or if other factors are at play.  24 

Tracts with a higher share of young people (ages 18 to 34) have a strong positive effect on 25 

the number of shared TNC trips but areas with a higher share of the population (ages 25 and above) 26 

with at least a bachelor’s degree have a strong negative relationship with the ratio of shared trips 27 

to total TNC trips. As Millennials (ages 24 to 39 in 2020) are more educated than previous 28 

generations, there is value in instilling the habit of sharing transportation to unlock benefits for 29 

years to come. This last part is critical in creating long term behavioral shifts that lead to higher 30 

usages of high occupancy vehicles – be it TNCs, transit, or shared autonomous vehicles (SAVs).   31 
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