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ABSTRACT 

 

Long-combination vehicles (LCVs) have significant potential to increase economic productivity 

for shippers and carriers by decreasing the number of truck trips, thus reducing costs.  However, 

size and weight regulations, triggered by safety concerns and, in some cases, infrastructure 

investment concerns, have prevented large-scale adoption of such vehicles.  Information on 

actual crash performance is needed.  To this end, this work uses standard and heteroskedastic 

ordered probit models, along with the United States‟ Large Truck Crash Causation Study, 

General Estimates System, and Vehicle Inventory and Use Survey data sets, to study the impact 

of vehicle, occupant, driver, and environmental characteristics on injury outcomes for those 

involved in crashes with heavy-duty trucks. Results suggest that the likelihood of fatalities and 

severe injury is estimated to rise with the number of trailers, but fall with the truck length and 

gross vehicle weight rating (GVWR).  While findings suggest that fatality likelihood for two-

trailer LCVs is higher than that of single-trailer non-LCVs and other trucks, controlling for 

exposure risk suggest that total crash costs of LCVs are lower (per vehicle-mile traveled) than 

those of other trucks.    
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INTRODUCTION 

 

Larger trucks can increase economic productivity by increasing cargo capacity per trip. This is 

believed to result in reduced overall transportation and fuel costs and emissions due to fewer 

truck trips (Caltrans 2009).  As a result, use of long combination vehicles (LCVs)
1
 is increasing, 

both in terms of total vehicle miles traveled (VMT) as well as proportion of vehicles on U.S. and 

Canada‟s highways (Abdel-Rahim et al. 2006). Nevertheless, truck size and weight regulations, 

in large part motivated by safety concerns, have greatly limited the large-scale adoption of larger 

vehicles. The 1991 Intermodal Surface Transportation Efficiency Act (ISTEA) froze LCV 

operations on interstates to only those authorized by state governments before June 1, 1991. 

Currently, operation of three LCV configurations
2
 is permitted on designated routes in twelve 

states:  Alaska, Arizona, Colorado, Idaho, Indiana, Kansas, Montana, Nevada, North Dakota, 

Oklahoma, South Dakota and Utah. Other, specific configurations are permitted on selected 

routes in six other states (AASHTO 1995). 

 

Identifying factors which affect large-truck safety is essential for developing policies and 

regulations that enable LCV operations without compromising safety and efficiency. The number 

of large trucks involved in fatal and non fatal crashes increased by 5.9% from 2004 to 2007 

(FMCSA 2009), while VMT for these vehicles increased by 135% (FMCSA 2009). In general, 

analysis of LCV safety relative to other heavy-duty trucks (HDTs) has been difficult, due to a 

lack of data involving LCVs (GAO 1992, USDOT 2000, and Craft 1999). 

 

This work examined hundreds of factors affecting crash severity for persons involved in HDT 

crashes by analyzing records in the recent Large Truck Crash Causation Study Data (LTCCS), 

provided by the U.S. Federal Motor Carrier Safety Administration (FMCSA) and National 

Highway Traffic Safety Administration (NHTSA). Standard ordered probit and heteroskedastic 

ordered probit (OP and HOP) models were used to illuminate the impact of various truck, 

environmental and occupant characteristics on injury outcomes. 

 

The next section provides a detailed overview of related research and motivates the need for this 

work. The model structure of the OP and HOP models is then discussed, along with formulae for 

calculating marginal effects of control variables and data sets used. Finally, model results and 

conclusions are provided. 

 

                                                        
1  In the United States, LCVs are defined as heavy-duty trucks greater than 80,000 lbs gross vehicle weight rating 

(GVWR) with two or more trailers and at least one such trailer longer than 28 feet.  In Canada, LCVs are defined as 

heavy-duty trucks with two or more trailers and total length greater than 25 m (about 82 ft).  
2
 The three LCV configurations operating in the U.S. are the Rocky Mountain Double (two trailers, with the first 48 

feet long and second trailer 28.5 ft long), the Turnpike Double (two 48‟ trailers), and the Triple (three 28.5‟ trailers). 
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LITERATURE REVIEW 

 

Researchers have adopted two approaches to the study of large truck and LCV safety. The first 

approach emphasizes operational characteristics and large truck design requirements, as 

compared to other trucks and roadway geometry, in order to anticipate real-world safety impacts 

(Caltrans 1983, Harkey et al. 1996, Hanley et al. 2005, Glaeser et al. 2006, Debauche et al. 2007, 

Renshaw 2007, and Knight et al. 2008). The second approach to large truck and LCV safety 

evaluation involves analysis of actual crash rates and outcomes, in order to identify general 

trends and relationships.   

 

Based on the crash histories of multiple-trailer trucks, a USDOT (2000) study concluded that 

trucks pulling more than two trailers are likely to be involved in 11% more crashes per mile 

traveled than single trailer trucks, when both trucks are operated under similar conditions 

(USDOT 2000). However, LCVs carry more cargo, so their crash-rate per ton-mile can be 

significantly lower.  And crash-severity differences can go either way, as discussed below. 

 

Truck length is a key variable. Vierth et al. (2008) conducted an analysis of 2003 to 2005 

accident data in Sweden to check if the presence of longer trucks results in more overtaking-

related crashes and concluded that the increase in accident risk is not statistically significant and 

is offset by truck-miles reductions (thanks to bigger cargos).  

 

Campbell et al. (1989) surveyed 12 western states where LCV operations were permitted and 

identified around 550 police-reported crashes involving LCVs. The accident rates were found to 

be lower than what was expected for combination vehicles, either due to under-reporting or the 

presence of operational restrictions on LCVs. Using the general estimates system (GES) data 

from the National Highway Traffic Safety Administration (NHTSA) for the years 1989-1993, 

Wang et al. (1999) concluded that combination-unit-trucks enjoy significantly lower crash rates 

as compared to passenger vehicles and single-unit trucks (at rates of 226 combination-unit 

crashes per 100 million miles traveled, versus 556 for passenger vehicles, 416 for light-duty 

trucks, and 289 for single-unit trucks). 

 

Using Alberta, Canada data from 1995 to 1998, Woodrooffe (2001) compared LCV safety to that 

of other vehicle classes. He determined that the LCVs enjoy the lowest collision rates (per mile-

traveled) among all vehicle classes in that region, with fewer than 14 involved LCVs per year. 

The number of LCV collisions that occurred in rural areas was roughly twice the number of such 

incidents in Alberta‟s urban areas. Montufar et al. (2007) conducted a similar study in the 

Alberta region from 1999 to 2005, to compare and contrast safety performance over the study 

periods. Their work revealed LCVs to be the safest among all vehicle types, with just 40 

collisions for every 100 million miles traveled plus the lowest injury and fatality rates. Driving 

actions such as improper turning and lane change maneuvers and unsafe roadway conditions 

such as presence of snow, ice, slush or rain were the major causes of LCV related incidents 

(Montufar et al. 2007). Abdel-Rahim et al. (2006) obtained similar results from analyzing LCV 

crash data in Idaho, Montana, Oregon and Utah.  
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Several European countries have been studying the feasibility of using longer, heavier vehicles 

(LHVs)
3
  for freight transport. Debauche et al.‟s (2007) safety survey of roughly 100 LHVs for 

the Dutch Ministry of Transport estimated LHVs to have similar levels of safety when compared 

to heavy goods vehicles (HGVs)
4
  and slightly lower fatal injury crash counts (totaling just 4 to 

25 such crashes a year in the Netherlands). Motorists also did not report any decrease in 

perceived safety level in the presence of a LHV, as opposed to a regular HGV. 

 

While crash rates may be significantly lower, LCVs and combination trucks have been found to 

result in higher casualty rates, per crash (Vierth et al. 2008 and Zaloshnja et al. 2000), and higher 

crash costs per incident (Zaloshnja et al. 2000, Wang et al. 1999, Zaloshnja and Miller 2004, and 

Zaloshnja and Miller 2007).  Nonetheless, Zaloshnja and Miller (2004) concluded that the lower 

crash rates of LCVs outweigh their higher crash costs, making LCVs safer per vehicle-mile 

traveled than other HDTs. 

 

Forkenbrock et al. (2003) used multiple classification analysis and automatic interaction 

detectors for a 1995-1998 Trucks Involved in Fatal Accidents (TIFA) data file, as maintained by 

the University of Michigan Transportation Research Institute (UMTRI). They concluded that 

multiple-trailer trucks have a higher likelihood of crash involvement when compared to single-

trailer trucks under difficult driving conditions. Such conditions include darkness, snow on the 

road, and moderate traffic volumes on reasonably high-speed facilities.  

 

In the United Kingdom, Knight et al. (2008) found that 18.3% of traffic fatalities involved one 

HGV, even though they accounted for less than 6% of VMT. The three main factors affecting 

fatal-outcome likelihood were found to be collision speed, mass of the two vehicles, and type of 

impact. Of course, the higher the collision speed, the more severe the crash. Interestingly, as the 

ratio of vehicle masses increases beyond 50:1 (as is generally the case with LHVs), there was no 

significant change in incident severity for the passenger vehicle occupants  assuming there are 

no secondary incidents. The likelihood of death for an HGV occupant is low, as long as the truck 

can absorb some of the crash impact (as is the case with most HGV-passenger car accidents). 

Knight et al. (2008) noted that the presence of Collision Mitigating Braking Systems (CMBS) 

has the potential to reduce heavy vehicle crash frequencies by up to 75%, and an even greater 

percentage for LHVs (Grover et al. 2007 and Knight et al. 2008). 

 

By extrapolating the UK casualty rate data, Knight et al. (2008) concluded that casualty risks 

will increase with the number of axles. However, they acknowledge that the methodology they 

adopted significantly overestimates LHV risks. No trends were observed when fatality rates were 

extrapolated over gross vehicle weights. They also concluded that LHVs are more likely to be 

involved (around 5 to 10% more) in severe accidents as compared to standard trucks, assuming 

that no additional safety measures are employed in LHV use.   

 

Recently, Knipling et al. (2008) used the U.S.‟s Large Truck Crash Causation Study (LTCCS), 

which contains information on 963 crashes involving 1,241 trucks between 2001 and 2003, to 

compare combination-truck and single-unit truck crashes. They examined 44 variables 

characterizing crash type, driver characteristics, driving environment and vehicle type. The 

                                                        
3
 LHVs are vehicles longer than 54 ft. and heavier than 44 metric tonnes (RoadTransport, 2009). 

4
 HGVs are those vehicles weighing more than 3500 kg, or 7714 lbs (ERSO, 2009). 
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percentage of crashes in dark conditions was found to be three times higher for combination 

trucks when compared to single-unit trucks.  

 

Of course, LCVs do not always operate under the same conditions as other HDTs.  For instance, 

LCV drivers are usually better-trained and have more experience than other HDT drivers in 

Canada and the U.S. (Abdel-Rahim 2009 and Regehr 2009).  In addition, certain LCV operations 

may favor nighttime travel, and LCV use is often prohibited during times of heavy congestion in 

large Canadian cities (Regehr 2009 and Woodrooffe 2009).  Abdel-Rahim (2009) has suggested 

that many U.S. states prohibit LCV use in bad weather conditions, and often restrict their use to 

routes with the most ideal geometric designs (such as interstate highways).  

 

In general, no study has been able to conclusively determine whether larger trucks decrease 

safety levels overall. Much analysis has been based on simple rate comparisons and univariate or 

bivariate cross-tabulations. This paper uses ordered probit models to analyze injury severity for 

crashes involving at least one truck with a gross vehicle weight rating over 10,000 pounds.  In 

addition, simulated outcomes are generated and combined with crash cost and HDT crash rate 

data to examine exposure risk of LCVs versus other HDTs. Ordered probit models have been 

used to analyze crash severity of automobile crashes (Khattak et al. 1998, 2002, Kockelman and 

Kweon 2002, 2003, Abdel Aty 2003, and Khattak and Rosa 2003), with O‟Donnell and Connor 

(1996) and Wang and Kockelman (2005) using heteroskedastic ordered probit and logit models 

to analyze injury severity. The next section describes the model specification used in this study. 

  

MODEL STRUCTURE  

 

A standard ordered probit (OP) model assumes that ordinal discrete responses can be modeled 

using a latent continuous variable expressed as a function of explanatory variables and an error 

term, as follows: 

 

        (1) 

 

where i is an index for an observation or individual,  represents the latent continuous 

dependent variable,  is vector of explanatory variables,  is a column vector of coefficients (to 

be estimated), and   is an error term representing all unobserved characteristics affecting the 

crash outcome. In OP models,  is modeled as a random variable following an i.i.d normal 

distribution (with variance ) for all observations. 

 

The observed variable  for the i
th

 observation can take ordinal discrete values ranging from 1 to 

S. The observed variable  is related to the continuous latent variable   as follows: 

 

        (2) 

 

where  denotes the boundary points or thresholds for the latent continuous variable  such that 

.  Since latent variables can assume any real numbered value, the first and last 

thresholds are set to  (i.e.,  and ).  For the purpose of statistical 

identification, two other model parameters must be fixed as well.  In this case, the second and 
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third threshold parameters are set to 0 and 1 (i.e.,  and ).  The probability of 

observed variable  taking an outcome value  is given by:  

 

                               (3) 

 

where   represents the standard-normal cumulative distribution function. 

 

In many cases, error terms may not be homoskedastic, and their variance may be parameterized 

as a function of covariates. In such cases, a heteroskedastic ordered probit (HOP) model is used, 

where the variance of observation i‟s error term, , is expressed as follows: 

 

 
  

       (4) 

 

In the above equation,
 

 and  represent vectors of explanatory variables and their associated 

coefficients, respectively. The probability of observed variable  taking an outcome value  is 

given by: 

 

       (5) 

 

The likelihood function of either model (OP or HOP) can be written as shown below: 

 

    (6) 

 

where  represents the population expansion factor (or crash-record weight, as provided by the 

LTCCS data) for the thi observation, and  is an indicator variable taking a value of 1 if event 

 is true and 0 otherwise.  In the OP case, .  

 

This paper uses Bayesian techniques to estimate the two models.  Denoting the set of 

independent variables as  and the set of response variables as , the Bayesian posterior 

distribution is written as follows (Gelman et al. 2004): 

 

       (7) 

 

where  represents the likelihood function (shown in equation 6) and  is 

the prior distribution of model parameters (reflecting the analyst‟s prior beliefs).  In the standard 

Bayesian construction of the probit model (see, e.g., Albert and Chib 1993 and McCulloch and 

Rossi 1994), latent variables, , are assumed to be random (nuisance) parameters to be 

estimated.  In this context, the likelihood function can be rewritten as follows: 

 

      (8) 
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Here,  takes a value of 1 if  is between  and , and  

represents our prior density of  (i.e., a normal with mean  and variance ).  Using this 

notation, the posterior density of model parameters can be rewritten: 

 

  (9) 

 

The prior distributions of parameters are assumed independent of one another such that 

.  The prior for  is taken to be normal with mean  and covariance 

matrix  and the prior on  is taken to be non-informative (i.e., proportional to 1).  In the case 

of the OP model, the prior on  is inverse gamma with shape and scale parameters q and r, and 

in the case of the HOP model, the prior on  is taken to be normal with mean  and covariance 

matrix . 

 

Bayesian estimation for both model specifications proceeds by drawing each set of parameters 

from their conditional posterior distribution via a four-step Gibbs sampler as follows: 

 

Step 1:  Draw  
Step 2:  Draw  
Step 3:  Draw   
Step 4:  Draw  

 

For latent variable, , the conditional posterior distribution is truncated normal with mean , 

variance , and lower and upper bounds of  and . 

 

The conditional posterior distribution of  can be written as follows: 

 

      (10) 

 

Since  and  are both normal densities, it can be shown through some simple 

manipulation that  is distributed normally with mean given by  and covariance matrix given 

by , where  and  are defined as follows: 

 

         (11) 

         (12) 

 

Here,  is a matrix with off-diagonal elements of zero and diagonal elements equal to .  

In this work, the prior mean vector, , was set to zeros and the prior covariance matrix, , was 

set to zeros on off-diagonal elements and 100 on all diagonal elements (providing essentially no 

information to the model). 

 

Since the prior is non-informative and the likelihood function only offers bounds on the 

parameters, the  can be drawn from uniform distributions with lower and upper bounds 

given by  and , where  is the set of all observations such that 

. 
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In the final step,  is drawn from its conditional posterior distribution.  For the OP specification, 

 and ‟s prior is inverse gamma, resulting in the following conditional posterior 

distribution: 

 

    (13) 

 

Thus,  is distributed inverse gamma with shape and scale parameters of  and 

.  Here,  and  were taken as one each (again providing the model 

very limited prior information). 

 

For the HOP specification,  and ‟s prior is normal.  (Note that in this case, one 

must draw , not  directly.)  Since the product of the likelihood and prior does not result in a 

standard density function, a normal random-walk Metropolis-Hastings (MH) step (see, e.g., 

Gamerman and Lopes 2006) is employed to draw .  The conditional posterior density can be 

written as follows: 

 

  (14) 

 

Here, the prior mean, , was chosen to be zero and the prior covariance matrix, , was set to 

zeros on the off-diagonal elements and 10 on the diagonal.  Like the other priors, this prior offers 

very little information to the model (essentially allowing the data set [n=922 and n=1,894 for 

crash- and vehicle-level models] to determine all estimates). 

 

Of course, the HOP model specification is more flexible than the OP, since it allows the variance 

term to vary for each observation. The OP is a special case, where all t  are effectively zero 

(other than a constant).  Wang and Kockelman (2005) used a similar specification for 

heteroskedastic ordered logit models of crash outcomes (with mostly light-duty vehicles) and 

found outcome variance (and thus outcome uncertainty) to rise with speed limit, and vary as a 

function of vehicle weight and vehicle type (with pickup trucks exhibiting higher uncertainty in 

all contexts, but weight and other vehicle types having different impacts depending on whether 

the crash involved one or two vehicles).  O‟Donnell and Conner (1996) found speed limit to 

increase variance and thus outcome uncertainty. Unlike these previous studies, this paper uses 

Bayesian estimation techniques, which offer a distribution of model parameters, rather than 

single point estimates.  This allows the analyst to characterize crash severity outcome uncertainty 

in a meaningful way.   

 

DATA DESCRIPTION 

 

The primary data used here come from the Large Truck Crash Causation Study Data (LTCCS), 

collected by the United States‟ Federal Motor Carrier Safety Administration (FMCSA) and 

National Highway Traffic Safety Administration (NHTSA).  Data were collected on crashes 

involving at least one truck with gross vehicle weight rating over 10,000 pounds, and an attempt 

was made during data collection to include only those crashes resulting in at least one injury or 

fatality (i.e., the three most severe crash types according to the KABCO injury scale).  Trained 
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staff from NHTSA‟s National Automotive Sampling Scheme (NASS) and state truck inspectors 

collected the LTCCS crash data in 24 data collection sites across 17 states between April 2001 

and December 2003. The data collection efforts involved interviews with drivers, passengers, 

and witnesses.  

 

Two collection sites were selected from each of the nation‟s 12 geographic areas. These areas 

were defined by four broad regions (northeast, midwest, south, and west), each broken into 

central city, large county, and county-group categories (as described in the LTCCS Codebook
5
). 

Analysts estimated a weight for each crash record to indicate how the data set can be expanded 

to provide a reasonably representative sample of the nation‟s injurious large-truck crashes.
6
  

These weights are included in the likelihood functions of the models here. 

 

Two response variables were of interest here, resulting in two different data sets.  The first was 

vehicle-based, and used the maximum injury severity suffered by any vehicle occupant.  While 

each vehicle in the dataset was involved in an injurious crash (i.e., the maximum injury severity 

sustained across all individuals in the crash was injurious or fatal), the maximum vehicle-level 

injury severity could be coded as any one of the five KABCO severities (including no injury, 

possible injury, non-incapacitating injury, incapacitating injury, and fatal).  However, since there 

were so few vehicles coded in the “possible injury” category, it was grouped with the “no injury” 

category for a total of four possible outcomes.  The second data set was crash-based, and was 

used to analyze the maximum injury severity suffered by any person involved in the crash.  

Since, each crash involved at least on injury or fatality, only three possible outcomes could be 

observed.  Explanatory variables include a great variety of driver, environmental, and vehicle 

attributes, including the attributes of the truck involved. When multiple trucks were involved in a 

crash, the variables associated with the “largest truck” were used. Largest truck was defined as 

the truck having the most trailers (and then, in the event of a tie, the longest truck, and then the 

heaviest truck [according to GVWR]).  In the model of occupant injury severity, 1,894 

observations were used, after removing 8.9% of the records due to missing data.  In studying the 

maximum injury severity, 922 observations were used (after deleting 4.2% of records for which 

variables were missing).  Even after removing records because of missing data, a fairly large 

number of observations had missing data for the largest trucks length and GVWR (about 22% of 

crash observations).  In order to preserve the sample and because these characteristics were 

viewed to be potentially important determinants of injury severity outcomes, average variable 

values were used when such data was missing.  For single-unit trucks with no trailers, average 

length and GVWR were 30.5 ft and 50,000 lbs.  Average lengths for tractor trailers with 0, 1, and 

2 trailers were 25.4, 64.0, and 71.5 ft, respectively, while average GVWRs for such vehicles 

were 52,900, 116,000, and 133,000 lbs, respectively.  

 

As Table 1 values indicate, in the first data set (vehicle-level), 58.5% of all cases experienced an 

injury, with fatalities for 4.1% of vehicle observations. In the second data set (crash-level), 

injuries were observed for 91.5% of the observations, and fatalities for 8.5%.  

 

Table 1 goes here 

 

                                                        
5
 The Codebook can be found at http://152.122.44.126/ltccs/data/documents/LTCCS_Codebook.pdf. 

6
 Only those crashes where at least one injury or fatality occurred were given positive weights. 
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Table 2 provides summary statistics for all variables used in the study.  Variables are partitioned 

into three groups:  crash-level variables, largest-truck (in crash) attributes, and vehicle and driver 

variables.  All roadway characteristics (such as grade, curvature, classification, lanes, and speed 

limit) are shown in the largest-truck and vehicle/driver groups, as they pertain to the associated 

vehicle.  The “other weather” indicator variable implies the presence of weather conditions other 

than rain, snow, or fog (e.g., wind, sleet, hail, and dust).  The “other aggression” indicator refers 

to aggressive driving behavior other than speeding (e.g., tailgating, weaving in and out of traffic, 

violations of traffic control devices, rapid acceleration, honking horn, flashing lights, obscene 

gestures, and obstructing the path of others).  Finally, uphill and downhill grades are defined as 

those exceeding 2%. 

 

Table 2 goes here 

 

Data on driver, occupant, truck, and environmental characteristics were examined in a variety of 

initial model formulations.  To arrive at final model specifications, variables that were found to 

have little practical and/or statistical significance were removed in a sequential variable 

elimination process.  Some variables that were considered intuitively important were retained 

despite relatively low significance (e.g., the number of trucks and passenger vehicles and dark 

lighting conditions).    

 

SEVERITY MODEL RESULTS 

 

The final OP and HOP models (each with the same set of explanatory variables) were compared 

using total log-likelihood values (across all observations).  Since Bayesian estimation output 

offers a collection of parameter draws from the posterior distribution, each draw is used to 

compute the likelihood each model would predict the actual severity outcome.  Figure 1a 

illustrates the distributions of total log likelihoods for the OP and HOP models of vehicle injury 

severity, while Figure 1b illustrates these distributions for the models of crash injury severity. 

 

Figure 1 goes here 

 

As shown in Figure 1a, the HOP‟s likelihood dominates the OP‟s 100% of the time.  Mean log-

likelihoods for the OP and HOP models are -1,993 and -1869 with standard deviations of 12.8 

and 13.8, respectively.  For the crash-level model (shown in Figure 1b), the HOP‟s likelihood 

beats the OP‟s almost 100% of the time.  The mean OP log-likelihood is -779 with a standard 

deviation of 5.3, while the HOP‟s mean log-likelihood is -751 with a standard deviation of 6.5.  

Thus, it seems that heteroskedasticity cannot be neglected for either model, and the HOP model 

specifications are preferred.  The results of these models are discussed below. 

 

Vehicle-Level Injury Severity Models 

 

Table 3 shows all parameter estimates for HOP and OP specifications of maximum injury 

severity at the vehicle level.  While signs are generally consistent across the two models, one 

cannot readily appreciate most variables‟ full effects in the HOP model since most are estimated 

to affect both the mean and variance of our latent variable.  To appreciate the overall impact of 

each HOP model covariate, Table 4 provides estimates of each variable‟s effects on crash 
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severity probabilities.  These are found by computing the probability of severity outcomes at 

various levels of each variable (e.g., indicator variables can be 0 or 1, while number of occupants 

may vary from 1 to 10), and averaging the probability differences that emerge from the unit 

change differences in the explanatory factors.  In other words, these represent average severity 

outcome probability changes per unit change in the variable.  

 

Table 3 goes here 

 

Table 4 goes here 

 

Rows highlighted in light gray in Table 4 indicate variables that reduce the likelihood of fatality, 

while increasing the likelihood of no injury.  Rows highlighted in dark gray in the Table indicate 

variables that increase the chance of fatality, while reducing the probability of no injury.  The 

most practically significant variables are the number of passenger vehicles involved in the crash 

and an indicator for whether the observed vehicle is a bus or HDT: both increase the likelihood 

of their occupants departing the crash scene without a KAB injury.  This is not a surprising result 

for the number of passenger vehicles, since each crash involves at least one injury across all 

involved.  If there are more passenger vehicles involved in the crash, exposure risk is spread 

around, to some extent, leaving any particular vehicles‟ occupants better off.  And larger 

vehicles, like buses and HDTs, may be safer for their vehicle occupants, by providing a great 

deal of impact protection from a large mass of yielding steel.   

 

Other highly practically significant variables include the number of non-motorists involved, 

number of trailers of the largest truck involved, presence of fog, and whether the vehicle is a 

motorcycle.  The number of involved non-motorists increases both the likelihood of fatality 

within each vehicle involved and the chance of no injury, thanks to greater uncertainty in injury 

severity.  The number of trailers on the largest involved truck reduces the likelihood of no injury, 

while increasing the probability of each injury type.  Of course, a great deal of correlation exists 

between this variable and the truck-specific variables for the largest involved HDT (i.e., the 

HDT‟s single-unit status, length, and GVWR), all of which increase the likelihood of no injury.  

Thus, drawing firm conclusions based solely on the largest truck‟s number of trailers may not be 

wise, and simulations are performed later in the paper to get at a more definitive direction of this 

effect.  The presence of fog greatly reduces the no-injury outcome‟s likelihood, while greatly 

increasing the probability of a non-incapacitating injury (and largely maintaining other injury 

rates).  Even though drivers are probably more cautious under such conditions, they simply do 

not have time to react to their surroundings due to sight distance impairment, which can lead to 

more injurious crashes.  Finally, and not surprisingly, motorcycles fair very poorly in crashes.  

The probability of fatality for motorcycle riders involved in HDT crashes is estimated to be 30 

percentage points higher than that of occupants in other passenger vehicles. 

 

Crash-Level Injury Severity Models 

 

Table 5 provides estimates for the injury severity models at the crash level.  As in the vehicle-

level models, one must account for both mean and variance effects to fully appreciate how 

variables impact outcome probabilities.  Table 6 provides estimates of average effects for each 

explanatory variable in the HOP model (as described earlier).  Similar to Table 4, rows 
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highlighted in light gray in Table 6 are variables that are estimated to reduce the likelihood of 

fatality while increasing the likelihood of non-incapacitating injury, while dark-gray rows are for 

variables that increase the chance of fatality and reduce the probability of non-incapacitating 

injury. 

 

Table 5 goes here 

 

Table 6 goes here 

 

All non-bright conditions are estimated to increase the probability of fatality, perhaps because 

higher speed variations exist at nighttime, resulting in greater uncertainty in crash outcomes, or 

because appropriate response under darkness is difficult to come by (see, e.g., Kockelman and 

Ma 2004).  When the largest truck is maneuvering a curve in the road at the time of the crash or 

at a sag in the road profile, the likelihood of fatality is predicted to drop.  It could be that such 

roadway geometry increases driver awareness and/or encourages more cautious (e.g., slower) 

driving.  On the other hand, uphill and downhill grades of 2% or more are predicted to have the 

opposite effect on crash severity.  Interestingly and consistent with observations by Khattak et al. 

(2002) and Wang and Kockelman (2005), wet surface conditions are associated with less severe 

crashes.  However, snowy or icy road conditions and the presence of fog greatly increase the 

likelihood of fatality.  While one might expect drivers to exhibit more caution under such 

conditions, it could be that drivers simply do not realize how much caution is truly needed since 

such conditions occur with rarity.  Not surprisingly, higher speed limits and any vehicle‟s 

speeding just before the crash result in more severe crashes.  Somewhat surprisingly, however, 

when any driver is under the influence of illegal drugs or displaying other aggressive driving 

behavior (other than speeding), probability of the lowest crash severity is predicted to be higher.  

In the case of illegal drugs, the variance component is also predicted to increase, which ends up 

resulting in a slight increase in the probability of fatality as well.   

 

Not surprisingly, the number of trucks, passenger vehicles, and non-motorists involved in the 

crash all increase the probability of a fatality, as do the number of passenger vehicle and truck 

occupants.  As far as the characteristics of the largest truck involved, the number of trailers is 

predicted to increase the likelihood of severe injury and fatal crashes, while the total length and 

GVWR are predicted to reduce those likelihoods.  If the largest truck is a single unit with no 

trailer, the likelihood of both low severity and fatality rise due to the positive effect of the 

variable on variance.  Of course, these variables exhibit a great deal of correlation, so it would be 

difficult to make any strong conclusions simply based on isolating just one of these variables.  

The following presents a more detailed analysis of the largest truck type. 

 

Crash-Level Injury Severity and Costs by Largest Truck Type 

 

To further examine the effect of the largest truck‟s characteristics on crash injury severity, a 

simulation experiment was performed.  Trucks were classified into five categories:  single unit 

with no trailer, 0-trailer tractor, 1-trailer tractor, 2-trailer non-LCV (any 2-trailer HDT with both 

trailers measuring 28 ft or less), and 2-trailer LCV (2-trailer HDTs where one or both trailers are 

longer than 28 ft).  To perform the simulation, 5,000 observations were constructed by drawing 

randomly from the sample according to observation weights, and largest truck type 
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characteristics were assigned randomly based on the sample collection of each truck type.  Thus, 

for each truck type, 5,000 observations were simulated where the non-truck type variables were 

identical across the truck type simulated data points.  Finally, the posterior parameter draws were 

used to find the distribution of crash severity outcomes according to the type of largest truck 

involved.  Figure 2 illustrates the findings. 

 

 

Figure 2 goes here 

 

As shown in Figure 2, once involved in an injurious crash, 1-trailer HDTs are predicted to enjoy 

the lowest expected crash severity. The 2-trailer LCVs perform nearly the same as 2-trailer non-

LCVs and about as well as SU trucks, at least in terms of fatal outcomes.  This could be because 

drivers of such vehicles require more rigorous training and/or they are simply more cautious, so 

their crashes are less severe.  The truck type that performs worst in this case is the 0-trailer 

tractor.  Maybe this is because drivers of such vehicles feel they do not need to drive as carefully 

when a trailer is not being tow.   

 

In any case, a broader impression of LCV risks requires a look at severity shares for non-injury 

crash outcomes, which are not recognized in the LTCCS data.  Using the U.S. General Estimates 

System (GES) micro data (which provides crash data for all vehicle-involved crash types), from 

April 2001 to December 2003, estimates of non-injury and injury crash outcomes were found for 

each truck category.  Unfortunately, the GES does not offer truck length data, so crash outcomes 

for 2-trailer non-LCVs and LCVs are assumed equal here.  Based on this information, it appears 

that 12.4%, 13.1%, 13.9%, and 19.1% of truck crashes result in injury when the largest truck is a 

single unit, 0-trailer tractor, 1-trailer tractor, and 2-trailer tractor, with the remaining proportions 

made up by non-injury and possible injury severity outcomes.   

 

Taking it a step further, the GES data set can also be used to obtain estimates of the total number 

of crashes by largest truck type.  Combining this with vehicle-miles-traveled information from 

the Vehicle Inventory and Use Survey (VIUS) from 2002, it was estimated that single-unit trucks 

were involved in crashes every 311,000 (311K) VMT, while 0-trailer, 1-trailer, and 2-trailer 

tractors were involved in crashes every 371K, 422K, and 884K VMT, respectively.  Finally, to 

obtain crash cost estimates, one can refer to Zaloshnja and Miller‟s (2007) estimates of crash 

costs by injury severity, as shown in Table 7.
7
   

 

Table 7 goes here 

 

With this new information, it is possible to characterize the distribution of total costs on a crash 

basis, as well as on a vehicle-miles-traveled basis, as shown in Figure 3.
8
  Figure 3 illustrates that 

on a per-crash basis, 2-trailer non-LCVs and LCVs have the highest associated costs by far, with 

                                                        
7
 Average fatalities are often valued much higher than $3M to $4M in the literature, and Zaloshnja and Miller‟s 

(2007) costs may be low.  However, the main purpose of introducing these costs is to create a rating mechanism to 

relate the magnitudes of each crash type.  Thus, the key assumption here is that the relative magnitude of costs, by 

severity level, are reasonable, which they appear to be. 
8
 The reason the results are shown as distributions is that the parameters of the severity model are characterized by a 

posterior distribution rather than as point estimates.  Thus, these cost estimate distributions represent uncertainty 

from the crash severity model. 
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means of about $232K and $222K, respectively.  When one controls for crash rates by vehicle 

type, 1- and 2-trailer HDTs have nearly the same average crash costs at $0.255, $0.263, and 

$0.251 per vehicle-mile for 1-trailer HDTs, 2-trailer non-LCVs, and 2-trailer LCVs, respectively.  

Single-unit trucks (with no trailer) and 0-trailer tractors are associated with the highest crash 

costs per VMT, averaging $0.350 and $0.330, respectively.  Of course, on a per-ton-mile or per-

unit-volume basis, LCVs will fare even better, since, presumably, they carry more content. 

 

Figure 3 goes here 

 

These results suggest that LCVs are relatively safe.  Overall, 2-trailer LCV estimates suggest 

they may be as safe as their 1-trailer HDT counterparts, on a mileage basis.  Of course, on a 

crash basis, 2-trailer HDTs are less safe than all other truck types, due to their propensity to be 

involved in more serious crashes  once they are in a crash (which is less often, thanks to a 

variety of factors). 

 

CONCLUSIONS 

 

The paper analysis examined the impact of environmental, driver, and vehicle factors on injury 

severities resulting from large truck crashes by analyzing the U.S.‟s recent Large Truck Crash 

Causation Study (LTCCS) data.  Two regression models were developed to study both the 

maximum injury severity from a crash (over all involved individuals) and the maximum injury 

severity of occupants of all involved vehicles.  Ordered probit (OP) and heteroskedastic ordered 

probit (HOP) models were examined, and estimation results suggest that the more flexible HOP 

specifications perform significantly better (thanks to permitting variation unobserved 

components). 

 

The results of the two crash-conditioned models are generally consistent.  For example, the 

probability of the least severe injury type was greatly increased (given an injurious large truck 

crash) when the crash occurred at a curve in the roadway, the crash occurred on a roadway sag, 

any truck involved was overweight, any driver was under the influence of illegal drugs, and/or 

any driver was exhibiting aggressive driving behavior (other than speeding).  The probability of 

fatality is estimated to rise when non-bright lighting conditions are present, the road surface is 

snowy or icy, and/or fog is present.  In addition, the number of involved passenger vehicle and 

truck occupants was estimated to increase the likelihood of a fatal outcome.  While the number 

of truck trailers was estimated to increase the likelihood of fatality, total truck length and gross 

vehicle weight rating (GVWR) attributes were both estimated to reduce fatality likelihood.  

Taken together, these model estimates suggest 1-trailer trucks are associated with lower severity 

levels (assuming an injurious crash has occurred) and 0-trailer tractors are associated with the 

most severe injurious truck crashes, while single-unit trucks and 2-trailer non-LCVs and LCVs 

perform somewhere in the middle.  Of course, one must be careful in drawing conclusions.  The 

estimates here only relate to specific ranges of each variable.  If truck length and/or GVWR 

increase past the levels common in the LTCCS sample, the model‟s estimates may not be valid.   

 

Various researchers have found that LCVs enjoy lower crash rates than other HDTs (e.g., 

Woodrooffe 2001and Montufar et al. 2007), as confirmed here by combining truck crash data 

from the GES and truck usage data from the VIUS.  Once an analyst conditions on crash 
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occurrence, he/she can evaluate the severity of such crashes, as performed here.  While the crash-

level model results provided here suggest that LCVs (along with 2-trailer non-LCVs) may be 

associated with more severe and fatal injury crashes and the costs of those crashes may be 

highest in comparison to other truck types, such vehicles are associated with lower crash rates 

(per vehicle-mile traveled).  After controlling for exposure, results suggested that LCVs enjoy 

significantly lower crash costs, per vehicle-mile traveled.  This could be a result of any number 

of factors or combinations of those factors.  For instance, LCV drivers are often better-trained 

and more experienced, many states restrict LCV use when road surfaces are snowy or icy, and 

LCVs are often restricted to higher-design routes, such as interstates (Abdel-Rahim 2009 and 

Regehr 2009).    

 

Taken all together, the literature and these results suggest that LCVs vehicles deserve closer 

consideration, particularly if they offer opportunities for lowered transport costs and energy use 

without negatively impacting pavements, bridges, and other infrastructure elements. 

 

ACKNOWLEDGEMENTS 

 

The authors wish to recognize the Texas Department of Transportation for funding this research 

under TXDOT project number 0-6095, titled “Longer Combination Vehicles and Road Trains for 

Texas.”  The authors would also like to thank Ralph Craft and several anonymous reviewers for 

their suggestions. 

 

REFERENCES 

 

American Association of State Highway & Transportation Officials (AASHTO), Report of the 

Subcommittee of Truck Size and Weight of the AASHTO Joint Committee on Domestic Freight 

Policy, AASHTO, 1995. 

 

Abdel-Aty, M. A. Analysis of driver injury severity levels at multiple locations using ordered 

probit models. Journal of Safety Research 34(5): 597-603, 2003. 

 

Abdel-Rahim, A., Berrio-Gonzales, S.G., Candia, G., Taylor, W. Longer Combination Vehicle 

Safety: A Comparative Crash Rate Analysis. Final Report. National Institute for Advanced 

Transportation Technology (NIATT) Report Number N06-21, Idaho, 2006. 

 

Abdel-Rahim, A. Assistant Professor, Department of Civil Engineering, University of Idaho. 

Personal Interview, 2009. 

 

Albert, J.H., Chib, S. Bayesian Analysis of Binary and Polychotomous Response Data.  Journal 

of the American Statistical Association 88:  669-679, 1993. 

 

Bedard, M., Guyatt, G. H., Stones, M. J. and Hirdes, J. P. The independent contribution of driver, 

crash, and vehicle characteristics to driver fatalities. Accident Analysis and Prevention 34(6): 

717-727, 2002. 

 



Lemp, Kockelman, and Unnikrishnan  16 

California Department of Transportation (Caltrans). Longer Combination Vehicles Operational 

Tests. Available at www.dot.ca.gov/hq/traffops/trucks/exemptions/truck/lcv-op-test.pdf, 1983. 

 

California Department of Transportation (Caltrans). Longer Combination Vehicles Operational 

Tests. Available at http://www.dot.ca.gov/hq/traffops/trucks/exemptions/lcvs.htm, 2009. 

 

Campbell, K. L., Pettis, L.C. Accident Rates of Existing Longer Combination Vehicles. 

University of Michigan Transportation Research Institute, Ann Arbor, Michigan. Available at 

http://deepblue.lib.umich.edu/bitstream/2027.42/840/2/78795.0001.001.pdf, 1989.  

 

Craft, R. Longer Combination Vehicles involved in Fatal Crashes, 1991-1996. Federal Highway 

Administration, Office of Motor Carrier Research and Standards, Washington DC. Available at 

http://www.fmcsa.dot.gov/documents/ab99-018.pdf, 1999. 

 

Debauche, W., Decock, D. Working Group on Longer and Heavier Goods Vehicles (LHVs): 

Multidisciplinary Approach to the Issue). Belgian Road Research Centre. Appendix to the BRRC 

Bulletin Number 70, Brussels, Belgium. Available at 

http://www.brrc.be/pdf/bulletin_en/bul_en70t.pdf, 2007. 

 

European Road Safety Observatory (ERSO). Heavy Goods Vehicles. Available at: 

http://www.erso.eu/knowledge/content/50_vehicle/heavy_goods_vehicles.htm . Last Accessed: 

July 20, 2009. 

 

Farmer, C. M., Braver, E. R. and Mitter, E. L. Two-vehicle side impact crashes: The relationship 

of vehicle and crash characteristics to injury severity. Accident Analysis and Prevention 29(3): 

399-406, 1997. 

 

Federal Motor Carrier Safety Administration (FMCSA). Crash Statistics 2009. Available at 

http://www.ai.volpe.dot.gov/CrashProfile/n_overview.asp, 2009. 

 

Federal Motor Carrier Safety Administration (FMCSA)., Motor Carrier Safety Progress Report,  

2007. Available at: http://www.fmcsa.dot.gov/facts-research/facts-figures/analysis-

statistics/MCSPR-12-31-07.htm. Last accessed: July 20 2009 

 

Federal Motor Carrier Safety Administration (FMCSA). Large Truck Crash Facts. Available at 

http://www.fmcsa.dot.gov/facts-research/research-technology/report/Large-Truck-Crash-Facts-

2005/Index-2005LargeTruckCrashFacts.htm#chap2, 2007 (Accessed July 1, 2009). 

 

Forkenbrock, D.J., Hanley, P.F. Fatal Crash Involvement by Multiple-Trailer Trucks. 

Transportation Research Part A 37: 419-433, 2003. 

 

Gamerman, D., Lopes, H.F.  Markov Chain Monte Carlo:  Stochastic Simulation for Bayesian 

Inference.  Chapman & Hall/CRC, Boca Raton, FL, 2006. 

 

Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.  Bayesian Data Analysis.  Chapman & 

Hall/CRC, Boca Raton, FL, 2004. 

http://www.dot.ca.gov/hq/traffops/trucks/exemptions/truck/lcv-op-test.pdf
http://deepblue.lib.umich.edu/bitstream/2027.42/840/2/78795.0001.001.pdf
http://www.fmcsa.dot.gov/documents/ab99-018.pdf
http://www.brrc.be/pdf/bulletin_en/bul_en70t.pdf
http://www.fmcsa.dot.gov/facts-research/facts-figures/analysis-statistics/MCSPR-12-31-07.htm
http://www.fmcsa.dot.gov/facts-research/facts-figures/analysis-statistics/MCSPR-12-31-07.htm
http://www.fmcsa.dot.gov/facts-research/research-technology/report/Large-Truck-Crash-Facts-2005/Index-2005LargeTruckCrashFacts.htm#chap2
http://www.fmcsa.dot.gov/facts-research/research-technology/report/Large-Truck-Crash-Facts-2005/Index-2005LargeTruckCrashFacts.htm#chap2


Lemp, Kockelman, and Unnikrishnan  17 

 

Glaeser, K.P., Kaschner, R., Lerner, M., Roder, C.K., Weber, R., Wolf, A., Zander, U. Effects of 

New Vehicle Concepts on the Infrastructure of the Federal Trunk Road Network. Final report. 

Federal Highway Research Institute, Berlin, Germany. Available at 

http://www.bast.de/nn_42642/DE/Publikationen/Downloads/downloads/60-tonner-englisch-

kurz,templateId=raw,property=publicationFile.pdf/60-tonner-englisch-kurz.pdf, 2006. 

 

Greene, W. H. Econometric Analysis, Fifth Edition. Prentice Hall, New Jersey, 2002. 

 

Grover, C., Knight, I., Okoro, F., Simmons, I., Couper, G., Massie, P., Smith, B. Automated 

Emergency Brake Systems: Technical Requirements, Costs and Benefits. Published Project 

Report Number 227. TRL Limited, Berkshire, United Kingdom. Available at 

http://ec.europa.eu/enterprise/automotive/projects/report_aebs.pdf, 2007 

 

Hanley, P.F., Forkenbrock, D.J. Safety of passing longer combination vehicles on two-lane 

highways. Transportation Research Part A 39:  1–15, 2005. 

 

Harkey D.L., Council, F.M., Zegeer, C.V. Operational Characteristics of Longer Combination 

Vehicles and Related Geometric Design Issues. Transportation Research Record 1523: 22- 28, 

2006. 

 

Khattak, A. J., Kantor, P. and Council, F. M. Role of adverse weather in key crash types on 

limited-access roadways. Transportation Research Record 1621: 10-19, 1998. 
 

Khattak, A. J., Pawlovich, M. D., Souleyrette, R. R. and Hallmark, S. L. Factors related to more 

severe older driver traffic crash injuries. Journal of Transportation Engineering 128(3): 243-249, 

2002. 

 

Khattak, A. J. and Rocha, M. Are SUVs „Supremely Unsafe Vehicles? Analysis of  rollovers and 

injuries with sport utility vehicles. Transportation Research Record 1840: 167-177, 2003. 
 

Kockelman, K.M., Ma, J. Freeway speeds and speed variations preceding crashes, within   and 

across lanes. Journal of the Transportation Research Forum, 46(1), 2007. 

 

Knight, I., Newton, W., Mckinnon, A., Palmer, A., Barlow, T., McCrae, I., Dodd, M., Couper, 

G., Davies, H., Daly, A., McMohan, W., Cook, E, Ramdas, V., Taylor, N.  Longer and /or 

Longer and Heavier Goods Vehicles (LHVs): A Study of the Likely Effects if Permitted in the 

UK. Final Report. Published Project Report Number 285. TRL Limited, Berkshire, United  

Kingdom. Available at http://www.ciltuk.org.uk/pages/downloadfile?d=46AAD48B-7044-4819-

81FA-753DF78D61AC&a=stream, 2008. 

 

Knipling, R. R. Comparison of Combination-Unit and Single-Unit Trucks in the Large Truck 

Crash Causation Study. Federal Motor Carrier Safety Administration Webinar, Virginia Tech 

Transportation Institute, 2008.   

 

Kockelman, K. M. and Kweon, Y. J. Driver injury severity: An application of ordered probit 

http://www.bast.de/nn_42642/DE/Publikationen/Downloads/downloads/60-tonner-englisch-kurz,templateId=raw,property=publicationFile.pdf/60-tonner-englisch-kurz.pdf
http://www.bast.de/nn_42642/DE/Publikationen/Downloads/downloads/60-tonner-englisch-kurz,templateId=raw,property=publicationFile.pdf/60-tonner-englisch-kurz.pdf
http://ec.europa.eu/enterprise/automotive/projects/report_aebs.pdf
http://www.ciltuk.org.uk/pages/downloadfile?d=46AAD48B-7044-4819-81FA-753DF78D61AC&a=stream
http://www.ciltuk.org.uk/pages/downloadfile?d=46AAD48B-7044-4819-81FA-753DF78D61AC&a=stream


Lemp, Kockelman, and Unnikrishnan  18 

models. Accident Analysis and Prevention 34(3), 2002, pp.313-321.  
 

Kweon, Y.J. and Kockelman, K. M. Overall injury risk to different drivers: Combining exposure, 

frequency, and severity models. Accident Analysis and Prevention 35(4): 441, 450, 2003. 

 

McCulloch, R., Rossi, P.E. An Exact Likelihood Analysis of the Multinomial Probit Model.  

Journal of Econometrics 64:  207-240, 1994. 
 

Montufar, J., Regehr, J., Rempel, G., McGregor, R. Long Combination Vehicle (LCV) Safety 

Performance in Alberta: 1999–2005. Final Report. Alberta Infrastructure and Transportation 

Policy and Corporate Services Division, Canada. Available at 

http://www.transportation.alberta.ca/Content/docType61/production/LCVFinalReport2005.pdf, 

2007. 

 

O'Donnell, C.J. and Connor, D.H. Predicting the severity of motor vehicle accident injuries using 

models of ordered multiple choice. Accident Analysis and Prevention 28(6): 739-753, 1996. 
 

Regehr, J. Department of Civil Engineering, University of Manitoba. Personal Interview, 2009. 

 

Renshaw, N. Longer and Heavier Lorries (LHLs) and the Environment. Position Paper. 

European Federation for Transport and Environment. Available at 

http://www.transportenvironment.org/Downloads-req-getit-lid-453.html, 2007. 

 

RoadTransport. Longer, Heavier Vehicles (LHVs). Available at 

http://www.roadtransport.com/staticpages/longerheaviervehicleslhvs.htm. Last Accessed, July 

2009 

 

Vierth, I., Berell, H., McDaniel, J., Haraldsson, M., Hammarström, U., Yahya, M., Lindberg. G., 

Carlsson, A., Ögren, M., Björketun, U. The effects of Long and Heavy Trucks on the Transport 

System. Report on a government assignment. Swedish National Road and Transport Institute 

(VTI) Report 6105a, VTI Sweden. Available at 

http://www.vti.se/EPiBrowser/Publikationer%20-%20English/R605A.pdf, 2008. 

 

US Department of Transportation - US DOT. Comprehensive Truck Size and Weight Study, 

Volume III, Scenario Analysis. US Department of Transportation, Washington, DC. Available at 

http://www.fhwa.dot.gov/reports/tswstudy/tswfinal.htm, 2000. 

 

US Government Accounting Office (GAO). Truck Safety: The Safety of Longer Combination 

Vehicles is Unknown. Report RECD-92-66. Government Accounting Office, Washington, DC. 

1992.  

 

Wang, X., Kockelman, K.M. Use of Heteroskedastic Ordered Logit Model to Study Severity of 

Occupant Injury: Distinguishing Effects of Vehicle Weight and Type. Transportation Research 

Record 1908: 195–204, 2005. 

 

http://www.transportation.alberta.ca/Content/docType61/production/LCVFinalReport2005.pdf
http://www.transportenvironment.org/Downloads-req-getit-lid-453.html
http://www.roadtransport.com/staticpages/longerheaviervehicleslhvs.htm
http://www.vti.se/EPiBrowser/Publikationer%20-%20English/R605A.pdf
http://www.fhwa.dot.gov/reports/tswstudy/tswfinal.htm


Lemp, Kockelman, and Unnikrishnan  19 

Wang, J. S., Knipling, R. R., Blincoe, L. J. The Dimensions of Motor Vehicle Crash Risk. 

Journal of Transportation and Statistics 2(1):19-43, 1999. 

 

Woodrooffe, J. Long Combination Vehicle Safety Performance in Alberta, 1995 to 1998. 

Alberta, Canada. Available at 

http://www.transportation.alberta.ca/Content/docType61/production/LCVSafetyPerformanceRep

ort.pdf., 2001. 

 

Woodrooffe, J. Director, Transportation Research Institute, University of Michigan. Personal 

Interview, 2009. 

 

Zaloshnja, E., Miller, T.R., Spicer, R.. Costs of Large Truck- and Bus-Involved Crashes (Final 

Report). Federal Motor Carrier Safety Administration, Washington, DC. Available at 

http://www.fmcsa.dot.gov/documents/ab01-005.pdf, 2000. 

 

Zaloshnja, E., Miller, T.R.. Costs of Large Truck-involved Crashes in the United States. Accident 

Analysis and Prevention 36: 801–808, 2004. 

 

Zaloshnja, E. and Miller, T.R. Unit Costs of Medium and Heavy Truck Crashes.  Final Report 

for Federal Motor Carrier Safety Administration (FMCSA) and Federal Highway Administration 

(FHWA), Washington, D.C., 2007. 

http://www.transportation.alberta.ca/Content/docType61/production/LCVSafetyPerformanceReport.pdf
http://www.transportation.alberta.ca/Content/docType61/production/LCVSafetyPerformanceReport.pdf
http://www.fmcsa.dot.gov/documents/ab01-005.pdf


Lemp, Kockelman, and Unnikrishnan  FIGURES 

 
Figure 1:  Log-Likelihood Distributions for OP and HOP Models of Injury Severity 

 

 

 

 

 

 
Figure 2:  Distribution of Crash Severity Outcomes by Truck Type 

 

Figure(s)



Lemp, Kockelman, and Unnikrishnan  FIGURES 

 
 

Figure 3:  Per-Crash Cost Estimates, by Largest Involved-Truck Type 
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Table 1:  Maximum Injury Severity Statistics (LTCCS Survey Data) 

Outcome 
Vehicle-Level Model Crash-Level Model 

Wtd. Freq. Wtd. % Wtd. Freq. Wtd. % 

No Injury 695 36.7 n/a n/a 

Possible Injury 13 0.7 n/a n/a 

Non-Incapacitating Injury 728 38.4 501 54.3 

Incapacitating Injury 380 20.1 343 37.2 

Killed 78 4.1 78 8.5 

 
 

Table(s)
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Table 2:  Descriptive Statistics (Vehicle-Level, n=1894; Crash-Level, n=922) 

  Variable 
Vehicle-Level Crash-Level   

Mean Std. Dev. Mean Std. Dev. Min. Max. 

C
ra

sh
 V

ar
ia

b
le

s 

Number of Involved Trucks n/a n/a 1.18 0.511 1 5 
Number of Involved Passenger 

Vehicles 
1.18 1.138 0.811 0.895 0 28 

Number of Involved Non-Motorists 0.011 0.104 0.019 0.137 0 2 
Dark Indicator n/a n/a 0.109 0.312 0 1 
Dark, but Lighted Indicator 0.117 0.321 0.115 0.319 0 1 
Dusk/Dawn Indicator 0.038 0.192 0.043 0.203 0 1 
Wet Surface Indicator n/a n/a 0.159 0.365 0 1 
Snowy/Icy Surface Indicator n/a n/a 0.017 0.128 0 1 
Snowing Indicator 0.009 0.094 n/a n/a 0 1 
Foggy Indicator 0.004 0.063 0.004 0.061 0 1 
Other Weather Indicator 0.013 0.113 0.013 0.112 0 1 
Overweight Indicator (Any Truck) 0.071 0.257 0.060 0.237 0 1 
Prescription Drug Indicator (Any 

Driver) 
n/a n/a 0.457 0.498 0 1 

Illegal Drug Indicator (Any Driver) n/a n/a 0.068 0.252 0 1 
Fatigued Indicator (Any Driver) 0.125 0.331 n/a n/a 0 1 
Speeding Indicator (Any Driver) 0.053 0.224 0.104 0.315 0 2 
Other Aggression Indicator (Any 

Driver) 
0.106 0.308 0.053 0.228 0 2 

Total Passenger Vehicle Occupants n/a n/a 1.24 1.65 0 40 
Total Truck Occupants n/a n/a 1.34 0.698 1 6 

L
ar

g
es

t 
T

ru
ck

 V
ar

ia
b
le

s 

Number of Truck Trailers 0.836 0.480 0.827 0.475 0 2 
Single-Unit Truck Indicator 0.188 0.391 0.189 0.391 0 1 

Length (ft) 57.1 17.1 57.1 16.7 9.8 105 

GVWR (1,000 lbs) 103 32.8 103 32.6 10.0 105 
Rural Non-Freeway Indicator n/a n/a 0.314 0.464 0 1 
Curved Road Indicator n/a n/a 0.333 0.471 0 1 
Uphill/Downhill Grade Indicator n/a n/a 0.370 0.483 0 1 
Road Crest Indicator n/a n/a 0.025 0.156 0 1 
Road Sag Indicator n/a n/a 0.005 0.072 0 1 
Speed Limit (mph) n/a n/a 51.7 11.9 15 75 

V
eh

ic
le

/D
ri

v
er

 V
ar

ia
b

le
s 

Number of Lanes (one directions) 2.93 1.22 n/a n/a 1 7 
Rural Non-Freeway Indicator 0.293 0.455 n/a n/a 0 1 
Rural Freeway Indicator 0.163 0.369 n/a n/a 0 1 
Urban Freeway Indicator 0.359 0.480 n/a n/a 0 1 
Uphill Grade Indicator 0.162 0.368 n/a n/a 0 1 
Illegal Drug Indicator 0.041 0.199 n/a n/a 0 1 
Vehicle Occupants 1.29 0.712 n/a n/a 1 11 
Truck Trailers 0.468 0.539 n/a n/a 0 2 
Bus Indicator 0.002 0.046 n/a n/a 0 1 
Motorcycle Indicator 0.003 0.053 n/a n/a 0 1 
Truck Indicator 0.587 0.492 n/a n/a 0 1 
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Table 3:  Estimation Results for Vehicle-Level OP and HOP Models 
  OP HOP 

  Main Effects Main Effects Variance Effects 

Variable Mean 95% Interval Mean 95% Interval Mean 95% Interval 

Constant 1.29 (0.986, 1.59) 2.04 (1.78, 2.32) -1.71 (-2.06, -1.31) 

Crash Variables   
 

  
 

    

# Passenger Vehicles -0.276 (-0.314, -0.240) -0.707 (-0.781, -0.626) 0.393 (0.349, 0.435) 

# Non-Motorists -0.892 (-1.34, -0.480) -3.64 (-10.4, -1.07) 1.50 (0.331, 2.86) 

Dark, but Lighted 0.201 (0.081, 0.328) 0.124 (0.031, 0.224) n/a n/a 

Dusk/Dawn 0.115 (-0.093, 0.295) 0.142 (-0.002, 0.265) -0.343 (-0.627, -0.073) 

Snowing -0.385 (-0.787, -0.007) -0.094 (-0.417, 0.114) -0.835 (-1.98, 0.165) 

Foggy 0.261 (-0.335, 0.821) 0.260 (0.124, 0.415) -2.98 (-4.17, -1.87) 

Other Weather -0.279 (-0.658, 0.086) -0.053 (-0.218, 0.112) -0.273 (-0.771, 0.207) 

Overweight (Any Truck) -0.181 (-0.355, -0.020) -0.177 (-0.341, -0.027) n/a n/a 

Fatigued (Any Driver) 0.169 (0.052, 0.282) 0.104 (0.014, 0.189) -0.214 (-0.352, -0.075) 

Speeding (Any Driver) -0.278 (-0.492, -0.072) -0.220 (-0.403, -0.028) -0.055 (-0.308, 0.209) 

Other Aggression (Any 

Driver) 
0.397 (0.227, 0.554) 0.210 (0.066, 0.341) 0.101 (-0.091, 0.296) 

Largest Truck Variables   
 

  
 

    

# Truck Trailers 0.199 (0.036, 0.365) 0.219 (0.059, 0.376) 0.167 (-0.082, 0.411) 

Single-Unit Truck -0.116 (-0.289, 0.065) -0.153 (-0.292, 0.001) 0.319 (0.065, 0.555) 

Length (ft) -0.005 (-0.009, -0.001) -0.011 (-0.014, -0.007) 0.011 (0.006, 0.017) 

GVWR (10,000 lbs) -0.010 (-0.030, 0.010) -0.005 (-0.022, 0.012) -0.031 (-0.058, -0.005) 

Vehicle/Driver Variables   
 

  
 

    

Number of Lanes (one 

direction) 
-0.041 (-0.074, -0.009) -0.021 (-0.055, 0.014) 0.024 (-0.021, 0.067) 

Rural Non-Freeway 0.161 (0.041, 0.272) 0.177 (0.081, 0.275) -0.071 (-0.186, 0.044) 

Rural Freeway 0.133 (-0.006, 0.261) 0.114 (-0.002, 0.232) n/a n/a 

Urban Freeway 0.104 (-0.006, 0.211) 0.061 (-0.038, 0.165) n/a n/a 

Uphill Grade 0.077 (-0.018, 0.185) 0.089 (0.010, 0.171) n/a n/a 

Illegal Drug 0.253 (0.076, 0.432) 0.102 (-0.041, 0.239) n/a n/a 

Vehicle Occupants 0.040 (-0.009, 0.087) 0.013 (-0.028, 0.053) n/a n/a 

Truck Trailers -0.178 (-0.305, -0.042) 0.004 (-0.125, 0.140) -0.272 (-0.444, -0.102) 

Bus -0.444 (-1.14, 0.217) -0.734 (-1.18, -0.341) n/a n/a 

Motorcycle 0.489 (-0.114, 1.12) 0.291 (-1.99, 4.08) 1.74 (0.677, 3.11) 

Truck -0.726 (-0.860, -0.592) -1.13 (-1.28, -1.01) 0.621 (0.437, 0.792) 

Structural Parameters 
      

Std. Dev. 0.634 (0.596, 0.677) n/a n/a n/a n/a 

Threshold 3 1.41 (1.36, 1.46) 1.33 (1.29, 1.37) n/a n/a 

              

Observations 1,894 1,894 
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Table 4:  Average Variable Effects (per Unit Change) on Outcome Severity in the Vehicle-

Level HOP Model 

  Probability Change in Outcome 

Crash Variables Non-Injury 
Non-Incap. 

Injury 
Incap. Injury Fatality 

# Passenger Vehicles 0.269 -0.144 -0.081 -0.044 

# Non-Motorists 0.120 -0.215 -0.021 0.116 

Dark, but Lighted -0.072 0.045 0.015 0.012 

Dusk/Dawn -0.109 0.138 -0.013 -0.016 

Snowing 0.091 -0.029 -0.040 -0.023 

Foggy -0.491 0.561 -0.044 -0.026 

Other Weather 0.046 -0.008 -0.023 -0.015 

Overweight (Any Truck) 0.101 -0.073 -0.016 -0.011 

Fatigued (Any Driver) -0.069 0.088 -0.007 -0.012 

Speeding (Any Driver) 0.131 -0.093 -0.023 -0.015 

Other Aggression -0.114 0.043 0.032 0.040 

Largest Truck Variables         

# Truck Trailers -0.122 0.043 0.033 0.046 

Single-Unit Truck 0.072 -0.108 0.008 0.029 

Length (10 ft) 0.058 -0.058 -0.004 0.004 

GVWR (10,000 lbs) 0.033 0.032 -0.026 -0.038 

Vehicle/Driver Variables         

# Lanes (one direction) 0.011 -0.012 0.000 0.001 

Rural Non-Freeway -0.106 0.083 0.015 0.008 

Rural Freeway -0.066 0.041 0.013 0.011 

Urban Freeway -0.035 0.024 0.007 0.005 

Uphill Grade -0.052 0.033 0.010 0.008 

Illegal Drug -0.059 0.036 0.012 0.010 

Vehicle Occupants -0.007 0.004 0.002 0.002 

Truck Trailers 0.000 0.039 -0.020 -0.019 

Bus 0.342 -0.281 -0.038 -0.023 

Motorcycle -0.015 -0.307 -0.009 0.331 

Truck 0.611 -0.449 -0.113 -0.049 
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Table 5:  Estimation Results for Crash-Level OP and HOP Models 
  OP HOP 

  Main Effects Main Effects Variance Effects 

Variable Mean 95% Interval Mean 95% Interval Mean 95% Interval 

Constant -0.223 (-0.837, 0.371) 0.102 (-0.533, 0.763) -1.42 (-1.99, -0.799) 

Crash Variables             

# Trucks -0.112 (-0.337, 0.114) -0.255 (-0.587, 0.046) 0.429 (0.186, 0.685) 

# Passenger Vehicles 0.027 (-0.106, 0.165) 0.042 (-0.103, 0.202) 0.181 (0.059, 0.302) 

# Non-Motorists 1.06 (0.673, 1.51) 1.10 (0.515, 1.71) 0.383 (-0.259, 1.08) 

Dark 0.063 (-0.157, 0.281) -0.094 (-0.507, 0.208) 0.435 (0.085, 0.799) 

Dark, but Lighted 0.466 (0.236, 0.704) 0.509 (0.310, 0.734) -0.218 (-0.505, 0.079) 

Dusk/Dawn 0.317 (-0.002, 0.638) 0.279 (-0.027, 0.602) n/a n/a 

Wet Surface -0.147 (-0.369, 0.044) -0.073 (-0.273, 0.113) -0.184 (-0.481, 0.115) 

Snowy/Icy Surface 0.377 (-0.106, 0.845) -0.100 (-1.71, 1.14) 0.882 (0.055, 1.83) 

Foggy 1.18 (0.102, 2.28) 1.08 (0.016, 2.19) n/a n/a 

Other Weather -0.989 (-2.15, -0.134) -1.11 (-2.28, -0.184) n/a n/a 

Overweight (Any Truck) -0.384 (-0.742, -0.044) -0.255 (-0.647, 0.076) n/a n/a 

Prescription Drug (Any 

Driver) 
0.107 (-0.027, 0.257) 0.048 (-0.091, 0.189) n/a n/a 

Illegal Drug (Any Driver) -0.346 (-0.660, -0.059) -0.660 (-1.360, -0.186) 0.498 (0.045, 0.987) 

Speeding (Any Driver) 0.177 (-0.036, 0.396) 0.059 (-0.157, 0.283) n/a n/a 

Other Aggression (Any 

Driver) 
-0.535 (-0.939, -0.179) -0.547 (-0.984, -0.180) n/a n/a 

Passenger Vehicle 

Occupants 
0.072 (0.005, 0.139) 0.091 (0.014, 0.171) n/a n/a 

Truck Occupants 0.087 (-0.078, 0.252) 0.137 (-0.026, 0.288) n/a n/a 

Largest Truck 

Variables 
            

# Truck Trailers 0.231 (-0.067, 0.513) 0.273 (-0.023, 0.578) n/a n/a 

Single-Unit Truck -0.208 (-0.540, 0.125) -0.461 (-0.793, -0.110) 0.584 (0.230, 0.973) 

Length (ft) -0.009 (-0.017, -0.001) -0.013 (-0.021, -0.005) 0.008 (-0.000, 0.016) 

GVWR (10,000 lbs) -0.022 (-0.060, 0.014) -0.037 (-0.075, 0.000) n/a n/a 

Rural Non-Freeway 0.380 (0.217, 0.554) 0.484 (0.303, 0.668) -0.241 (-0.474, -0.008) 

Curved Road -0.224 (-0.394, -0.063) -0.222 (-0.404, -0.061) n/a n/a 

Uphill/Downhill Grade 0.136 (-0.014, 0.294) 0.160 (0.009, 0.315) n/a n/a 

Road Crest 0.324 (-0.116, 0.724) 0.271 (-0.082, 0.612) -0.488 (-1.10, 0.105) 

Road Sag -1.04 (-3.18, 0.475) -5.80 (-22.2, 0.111) 0.756 (-0.948, 2.46) 

Speed Limit (mph) 0.008 (0.001, 0.015) 0.010 (0.003, 0.018) n/a n/a 

Structural Parameter             

Std. Dev. 0.772 (0.684, 0.865) n/a n/a n/a n/a 

              

Observations 922 922 

Note: No thresholds were estimated here since only three injury categories correspond to crash-level observations 

(and two thresholds have been fixed, to ensure model identification). 
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Table 6:  Average Variable Effects (per Unit Change) on Outcome Severity in the Crash-

Level HOP Model 

  Probability Change in Outcome 

Crash Variables 
Non-Incap. 

Injury 
Incap. Injury Fatality 

# Trucks 0.036 -0.093 0.057 

# Passenger Vehicles -0.028 -0.020 0.048 

# Non-Motorists -0.219 -0.101 0.320 

Dark 0.001 -0.085 0.084 

Dark, but Lighted -0.260 0.183 0.077 

Dusk/Dawn -0.129 0.063 0.067 

Wet Surface 0.051 -0.006 -0.045 

Snowy/Icy Surface -0.038 -0.150 0.188 

Foggy -0.392 0.012 0.379 

Other Weather 0.325 -0.247 -0.078 

Overweight (Any Truck) 0.109 -0.074 -0.035 

Prescription Drug (Any Driver) -0.022 0.013 0.009 

Illegal Drug (Any Driver) 0.154 -0.166 0.012 

Speeding (Any Driver) -0.028 0.015 0.013 

Other Aggression (Any Driver) 0.221 -0.156 -0.065 

Passenger Vehicle Occupants -0.038 0.011 0.027 

Truck Occupants -0.061 0.022 0.038 

Largest Truck Variables       

# Truck Trailers -0.123 0.065 0.058 

Single-Unit Truck 0.123 -0.174 0.050 

Length (10 ft) 0.052 -0.043 -0.009 

GVWR (10,000 lbs) 0.016 -0.009 -0.007 

Rural Non-Freeway -0.236 0.182 0.054 

Curved Road 0.100 -0.063 -0.037 

Uphill/Downhill Grade -0.074 0.042 0.031 

Road Crest -0.161 0.187 -0.026 

Road Sag 0.347 -0.299 -0.048 

Speed Limit (mph) -0.046 0.027 0.019 
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Table 7:  Crash Cost Estimates (in 1,000’s of 2005 dollars) by Injury Severity and Truck 

Type Involved (Source:  Zaloshnja and Miller 2007) 

Crash Severity Single Unit 0-Trailer 1-Trailer 2- or 3-Trailer 

No Injury $13.3 19.1 15.7 24.9 

Possible Injury 62.4 64.3 91.0 116.9 

Non-Incapacitating Injury 198.2 173.5 171.7 244.1 

Incapacitating Injury 640.5 381.3 437.8 1,292 

Killed 3,136 3,173 3,834 3,353 

 


