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Abstract 
Many databases involve ordered discrete responses in a temporal and spatial context, including, 
for example, land development intensity levels, vehicle ownership, and pavement conditions. An 
appreciation of such behaviors requires rigorous statistical methods, recognizing spatial effects 
and dynamic processes. This study develops a dynamic spatial ordered probit (DSOP) model in 
order to capture patterns of spatial and temporal autocorrelation in ordered categorical response 
data. This model is estimated in a Bayesian framework using Gibbs sampling and data 
augmentation, in order to generate all autocorrelated latent variables. It incorporates spatial 
effects in an ordered probit model by allowing for inter-regional spatial interactions and 
heteroskedasticity, along with random effects across regions or any clusters of observational 
units. The model assumes an autoregressive, AR(1), process across latent response values, 
thereby recognizing time-series dynamics in panel data sets. The model code and estimation 
approach is tested on simulated data sets, in order to reproduce known parameter values and 
provide insights into estimation performance, yielding much more accurate estimates than 
standard, non-spatial techniques.  The proposed and tested DSOP model is felt to be a significant 
contribution to the field of spatial econometrics, where binary applications (for discrete response 
data) have been seen as the cutting edge.  The Bayesian framework and Gibbs sampling 
techniques used here permit such complexity, in world of two-dimensional autocorrelation. 

Key words: Ordered response data, Bayesian approach, MCMC sampling, spatial 
autocorrelation, dynamics 



1. Introduction 
In the fields of regional science and transportation, variables of interest often are discrete in 
nature and involve temporal and spatial relationships. For example, land use intensity, vehicle 
ownership, and roadway service levels often are measured (and/or coded) as ordered discrete 
responses, dependent on various influential factors. These discrete responses share a common 
feature: they all exhibit some degree of temporal and spatial dependence or autocorrelation. For 
example, in two slices of a panel survey of households, the count of vehicles owned by the same 
household will be highly correlated. This phenomenon is normally defined as temporal 
dependency or autocorrelation. Meanwhile, even after controlling for household attributes, auto 
ownership levels are expected to exhibit positive correlations in the spatial context. To some 
extent, such correlation patterns can be explained by uncertainty or proximity because, in reality, 
there are always influential factors that cannot be controlled (e.g. pedestrian friendliness of all 
neighborhoods). The sign and magnitude of such uncertainties tend to vary rather gradually over 
space. Of course in a spatial context, in contrast to time-series data, such dependencies are two 
dimensional – which adds complexity. Like temporal relationships, correlation tends to diminish 
with increases in distance between any two households/observed units.  
 
Essentially, then, many phenomena involving ordered categorical data also have temporal and 
spatial relationships; yet the development of rigorous methods for analyzing these phenomena is 
still in its infantry.  This paper presents a model that is appropriate for describing the temporal 
and spatial relationships that exist in ordered categorical data. Related issues also are explored, 
indicating model estimation techniques, model validation and model comparisons (with 
simplified, less behaviorally reasonable models). Such model specifications and estimation 
techniques may be viewed as breakthroughs in the area of spatial econometrics, and the results 
extendable to a wide range of topics, where dependent variables are ordered discrete values and 
may involve temporal and spatial dependencies across observations.  
 
The following sections review existing studies, explain the intuition behind model specification 
and illustrate how to estimate the unknown parameters using Bayesian methods. Model 
performance is quantified using simulated datasets.  
 

2. Literature Review 
As in standard spatial econometrics, methods for dealing with spatial effects in discrete choice 
models can be categorized into three basic types. Geographically weighted regression (GWR) is 
most applicable when spatial variation in behavioral parameters is of strong interest. In an 
analysis on suburban subcenters and employment density, McMillen and McDonald (1998) 
propose the idea of applying standard logit or probit methods to distance weighted sub-samples 
of the data in place of least squares, essentially using GWR to deal with discrete responses. 
LeSage (1999) provided code for producing binary logit and probit GWR estimates, using crime 
data. Atkinson et al. (2003) also used a GWR binary logit model to explore relationships 
between the presence (or absence) of riverbank erosion and geo-morphological controls. Vanasse 
et al. (2005) incorporated GWR in a binary logit model to study spatial variation in the 
management and outcomes of acute coronary syndrome. 
 



The second method, spatial filtering, has been applied more broadly. It saves much specification 
and estimation effort. In addition to several land use/land cover models (e.g., Nelson and 
Hellerstein, 1997, Wear and Bolstad, 1998, and Munroe et al., 2001), many other works rely on 
this method. For example, an early study by Boots and Kanaroglou (1988) introduced a measure 
of spatial structure and used it as an explanatory variable when considering spatial effects in 
Toronto’s intra-metropolitan migration. Dugundji and Walker (2005) controlled for spatial 
network independencies in their mixed logit model when studying mode choice behavior. 
Coughlin et al. (2003) incorporated global and regional spatial effects into an analysis of state 
lotteries.  
 
The third method incorporates spatial effects directly in a discrete choice model setting and is the 
focus of this study. This method can be distinguished by two approaches. The first considers 
spatial autocorrelation across choices or alternatives, as often discussed for location choice 
models. This approach extends the commonly used GEV model by allowing correlated 
alternative-specific error terms in a mixed logit framework. For example, Miyamoto et al. (2004) 
assumed that location choice follows an SAR process, and used the weight matrix as a multiplier 
on dependent variables. Bhat and Guo (2004) used a contiguity matrix on their latent dependent 
variables to represent alternative-zone correlation patterns.  
 
The second approach considers spatial autocorrelation across observational units (or individuals), 
and is the focus of this work. Currently, studies recognizing such spatial autocorrelation are 
limited to binary choice settings. To some extent, Wang and Kockelman (2006)’s work on 
estimating urban land cover evolution seems an exception, because multiple choices are studied 
in a mixed logit framework. However, rather than permitting a more flexible SAR process, Wang 
and Kockelman used a direct representation method and assumed a specific distance-decay 
function for inter-observational correlations, making the spatial correlation pattern across 
observations rather arbitrary. All other existing spatial probit and logit work is binary in nature. 
Anselin (2001) reviewed such spatial probit models and notes that McMillen (1995) first used 
the EM algorithm to estimate a probit model with a SAR process. Beron and Vijverberg (2004) 
specified probit models with both spatial errors and spatial lags, and then estimated these models 
by using recursive importance sampling (RIS) to approximate the n-dimensional log-likelihood. 
LeSage (2000) specified a model with a spatially correlated error term and used Gibbs sampling 
for estimation. Smith and LeSage (2004) extended this study by incorporating a regional effect 
and used Bayesian techniques to analyze the 1996 presidential election results. Similar studies 
include Kakamu and Wago’s (2007) Bayesian estimation of a spatial probit model for panel data 
to analyze the business cycle in Japan.  
 
Another estimation approach is the generalized method of moments, or GMM. Pinkse and Slade 
(1998) first used GMM to estimate a probit model with spatial error components. Pinkse et al. 
(2005) refined that study by incorporating a dynamic structure for dependent variables and 
applying a one-step GMM. And Klier and McMillen (2007) used GMM to estimate a spatial 
logit model for analyzing the clustering of auto supplier plants in the U.S.  However, the use of 
GMM is limited because it requires orthogonality conditions (as discussed in works like Klier 
and McMillen, 2007, Pinkse and Slade, 1998, and Pinkse et al., 2005), and standard errors must 
be derived. For this reason, it presently is applied only to binary response models; it has not yet 
been extended to multiple-response models. All the other estimation methods can be called 



simulation estimators. As Anselin (2001) concludes, all current simulation estimators are slow, 
but Gibbs sampler is relatively less slow. In other words, among all three general methods 
discussed above, the most promising one for a model of multiple discrete response with spatial 
effects (both autocorrelation and heteroskedasticity) is Gibbs sampling within a Bayesian 
framework.  
 
In contrast to frequentist methods (i.e., classical statistical analysis), the Bayesian approach is 
rather straightforward in both model estimation and results interpretation. A primary motivation 
is rather direct interpretation of parameter estimates and probabilities. A Bayesian approach 
yields estimates of parameter distributions (rather than relying on asymptotics for normality). 
These distributions effectively define intervals that can be “regarded as having a high probability 
of containing the unknown quantit(ies) of interest” (Gelman et al., 2004). In contrast, frequentist 
methods focus on producing point estimates and rather standard confidence intervals, and 
resulting probabilities that are strictly interpreted as “long run (asymptotic) relative 
frequenc(ies)” (Koop et al., 2007).  
 
In practice, an important advantage of a Bayesian framework is its flexibility, allowing it to deal 
with complex estimation problems more easily. In fact, this is the main reason for this study’s 
choice of Bayesian framework – in addition to wanting to develop new methods of model 
estimation for regional and transportation sciences (where frequentist methods are the norm).  
 
In general, Bayesian estimation via Markov chain Monte Carlo (MCMC) simulation relies on a 
set of conditional distributions to deduce each parameter’s marginal distribution. In this way, 
models with many parameters and complicated multiple-layered probability specifications can be 
decomposed into a set of simpler sub-problems. By contrast, with frequentist methods, the 
models have to deal directly with any complicated model specification and any statistical 
problems arising from it. Of course, another well-understood advantage of using a Bayesian 
approach is that by having priors, one can make use of established intuition and experience to 
balance new information found in sample data. Thanks to its many advantages, a Bayesian 
approach has been used in various areas. For example, Wallerman et al. (2006) relied on 
Bayesian estimation for remote sensing data in forested areas, and Hamilton et al. (2005) used it 
to estimate expansion times and migration rates for Swiss populations. 
 
Albert and Chib (1993) introduced the Bayesian approach for (stationary, non-spatial) discrete 
response data models. LeSage (2000) first extended Albert and Chib’s approach to models 
involving spatial dependencies. Later work by Smith and LeSage (2004) further extended the 
model, by incorporating an error specification that allows both spatial dependencies and general 
spatial heteroscedasticity. All such studies, however, deal only with binary data. As previously 
discussed, many data sets offer multiple categories. No existing studies tackle such patterns in a 
spatial context. While Albert and Chib (1993) briefly mentioned possible extensions from binary 
data to ordered categorical data, they did not offer any methodological details. Several years later, 
Johnson and Albert (1999) suggested a detailed Bayesian framework for modeling ordinal data, 
and Cowles (1996) presented a method for accelerating MCMC convergence for models like the 
ordered probit. Girard and Parent (2001) even extended Albert and Chib’s study (1993) to 
temporally autocorrelated ordered categorical data, but there is nothing spatial in these studies. 
This study is inspired by such studies but adds sophistication while combining space and time for 



ordered categorical data. It goes beyond a simple extension or combination of these works. The 
contribution of these prior studies will discussed in more detail in the next section, through 
illustrations of model specification and estimation techniques. 
 
3 MODEL SPECIFICATION 

 
3.1 Standard Ordered Probit (OP) Model 
A standard ordered probit model has been used widely for estimating discrete responses of an 
ordinal nature (Greene, 2000). The model is built upon a latent regression that is expressed as 
follows: 

i i iU ξ′= +X β           (1) 
 
where i  indexes observations, ( 1,...,i N= ,) and iU  is a latent (unobserved) response variable for 
individual i . iX  is a 1Q×  vector of explanatory variables, and β  is the set of corresponding 
parameters. iξ  stands for unobservable factors for observation i  and (for a standard ordered 
probit model) is assumed to follow an iid standard normal distribution. 
 
The observed response variable, y , for the ith observation is as follows: 

iy s=  if 1s i sUγ γ− < < , 1,...,s S=  
 
That is, the observed variable is a censored form of the latent variable, and its possible outcomes 
are integers ranging from 1 to S . The latent variable iU  is allowed to vary between unknown 
boundaries 0 1 1S Sγ γ γ γ−< < < <L , where 0γ  is −∞  and Sγ  is +∞ . If constants are to be 
included in the explanatory variables, 1γ  also is normalized to equal zero. The probabilities for 
these S outcomes are as follows: 
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where ( )Φ •  is the cumulative distribution function (CDF) for a standard normal distribution.  
 
3.2 Spatial Ordered Probit (SOP) Model 
In many studies, individuals are surveyed from a region containing several sub-regions or 
neighborhoods. A certain number of observations is collected from each of these sub-regions. In 
such cases, the effects of different regions need to be considered. Smith and LeSage (2004) 
proposed the following form for the latent variable:  
 

ik ik ikU ξ′= +X β , with ik i ikξ θ ε= +        (3) 
 



where i  now indexes regions (instead of individuals) ( 1,...,i M= ) and k  indexes individuals 
inside each region (i.e., 1,..., ik n= ). In other words, there are M  regions, each containing in  

observations, so that the total number of observations is 
1

M

i
i

n N
=

=∑ . 

 
The main difference between Equations (1) and (3) is that the unobserved factor ikξ  is now 
composed of two parts: a “regional effect” iθ  and an individual effect ikε . The iθ  captures all 
unobserved, common features for observations within region i . To some extent, this 
specification is very close to a random effect in panel data, only here the “common factor” is 
cross-sectional rather than temporal. Of course, these regional effects are likely to exhibit spatial 
autocorrelation: individuals in region i  are likely to be more similar to those in neighboring 
regions than those in more distant locations. Therefore, a spatial autoregressive process can be 
formulated here, where 

1

M

i ij j i
j

w uθ ρ θ
=

= +∑ , 1,...,i M=        (4) 

and weight ijw  can be derived based on contiguity and/or distance. In addition, the weight matrix 

is row-standardized1 so that 0iiw =  and 
1

1
M

ij
j

w
=

=∑ . The magnitude of overall neighborhood 

influence is thus reflected by ρ , also called the spatial coefficient. iu  aims to capture any 
regional effects that are not spatially distributed, and is assumed to be iid normally distributed, 
with zero mean and common variance 2σ . Stacking all regions, then, the vector of regional 
effects can be formulated as 

ρ= +W uθ θ , ( )2, MN σ0u I        (5) 
 
Here, W  is the exogenous weight matrix with elements ijw  and MI  is an identity matrix with 
rank M . Let Mρ ρ= −B I W , where the subscript ρ  means that ρB  depends only on the 
unknown parameter ρ . Now, the vector of regional effects can be expressed as  

1
ρ
−= B uθ           (6) 

 
In other words, the distribution of θ  depends on two unknown parameters: ρ  and 2σ . It has a 
multivariate normal distribution: 

( ) ( ) 12 2, 0,N ρ ρρ σ σ
−⎡ ⎤′⎢ ⎥⎣ ⎦

B Bθ        (7) 

 

                                                 
1 The row-standardized approach is chosen because in this way the “Wy term becomes essentially a weighted 
average of observations at neighboring locations” (Anselin and Hudak, 1992). This leads to a more meaningful 
interpretation of ρ.  



The intuition behind this “regional effect” can be explained as follows: In many cases, 
individuals in a region2 share common features, yet these features differ from region to region. 
One source of such differences is policy variation by regions. For example, parcels subject to the 
same zoning constraints may share common features, but differ across zone boundaries. Animals 
enjoying the same habitat share experiences, thanks to vegetation and micro climates. Their 
settings shift across wide rivers, mountain ranges, or high-capacity freeways. Multiple regions 
may exist based on these physical boundaries. In short, there are reasons to believe that 
observations across space are influenced by “local effects”, which may exhibit spatial 
autoregressive patterns as a function of proximity. The use of such regional effects to capture 
certain spatial dependencies also enhances computational efficiency: normally, the number of 
regions is much lower than the total number of observations, allowing use of a ρB  of relatively 
low rank. Thanks to a lower dimension, the inversion of ρB and calculation of its eigenvalues, 
are much less computer-memory-intensive. Of course, both of these computations are necessary 
for parameter estimation. 
 
This “regional effect” offers an opportunity to make each individual a region, i.e., 1in =  i M∀ ∈ , 
(so M N= ). This allows all individuals to be spatially auto-correlated without imposing 
regional boundaries. While increasing computational burdens, such a specification is definitely 
feasible with a reasonable sample size.  
 
The final item requiring specification is the individual effect, ikε . It is computationally simplest 
to assume an iid distribution for ikε . And, within each region, it is behaviorally reasonable to 
make such assumptions (i.e., all ikε  follow a normal distribution with zero mean and variance 

iυ ). Across regions, it seems reasonable to expect heteroscedasticity. Stacking all observations 
and denoting ( ),N 0 Vε , one has  

1 1n

M nM

υ

υ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

O

I
V

I
        (8) 

 
which is an N N×  matrix with non-zero elements only along its diagonal. 
 
3.3 Dynamics to the Spatial Ordered Probit Model 
In this study, it is assumed that a time-space recursive formulation (Anselin, 1999) is proper for 
specifying the dynamics and spatial autocorrelation in dataset, which means that the current 
value depends on the previous period’s value (at the same location, and thus affected by 
neighboring locations), along with various contemporaneous factors. Furthermore, after 
controlling for all these temporally lagged and contemporaneous variables, the residuals remain 
spatially autocorrelated:  

                                                 
2 As used here, “region” means a cluster of observational units, within the same neighborhood or socially defined 
group (such as members of the same household or employees in the same firm).   



1ikt ikt ikt it iktU Uλ θ ε−
′= + + +X β , 1,...,t T=       (9) 

 
where t  indexes time periods and λ  is the temporal autocorrelation coefficient to be estimated. 
The absolute value of this λ  must be less than one in order to guarantee temporal stationarity. 
Each individual is now observed T  times (the dataset is a balanced panel), and the total number 
of observations is NT . itθ  is assumed to iid distributed over t  and so is iktε . In other words, 
after controlling for lagged dependent variables ( 1iktU − ), the error terms are sequentially 
uncorrelated and identically distributed. Though a more flexible framework is, of course, to 
allow itθ  and iktε  to exhibit sequentially dependencies or at least heteroscedasticity, it is 
reasonable enough to believe that after one controls for lagged latent dependencies (both spatial 
and temporal), the remaining error terms may be temporally constant, i.e.,  
 

it iθ θ≡  or t =θ θ , for all 1,...,t T=        (10) 
 
and  
 

ikt ikε ε≡  or t =ε ε , for all 1,...,t T=        (11) 
 
Equations (9) through (11) specify a dynamic spatial ordered probit (DSOP) model. Many 
examples in practice fit this specification. For example, land development decisions strongly 
depend on pre-existing and existing conditions, as well as owner/developer expectations of 
future conditions (such as local and regional congestion, population, and school access). These 
expectations can be approximated using contemporaneous measures of access and land use 
intensity, after which some spatial correlation in unobserved factors is likely to remain.  
 
Another example is of air quality, and ozone concentration levels: changes are temporally 
continuous so inclusion of lagged values is wise. The impact of some factors, such as 
temperature, may be instantaneous, so their contemporaneous values should be used. The process 
of atmospheric transport and other unobserved factors may cause spatial dependence, so spatially 
autocorrelated effects (regional/clustered or observational in nature) should be considered. 
Certainly, recognition of such temporal dependencies and spatial autocorrelation (of nuisance 
terms) is behaviorally more convincing and statistically more rigorous than simply controlling 
for contemporaneous factors and ignoring other, underlying spatial dependencies. 

The model specification can be expressed in vector form as follows: for each t T∈ , observations 
can be stacked by region, then by individuals. The resulting vector of latent responses is 
expressed as: 

1t t tλ −= + + +U U X Lβ θ ε         (12) 
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If observations over all time periods are stacked, the model can be written as  

λ = + +U Xβ θ εΔ       (13) 

where λU  is the vector of differences between adjacent time periods: ( )1 2, ,... T
λ λ λ λ ′=U U U U , 

with each 1t t t
λ λ −= −U U U , and 

T= ⊗l LΔ        (14) 
where Tl  is a 1T ×  vector of 1’s. 
 
Here, X  is an NT Q×  matrix, and ε  is an 1NT ×  vector with variance matrix 

T= ⊗I VΩ       (15) 
 
The likelihood function is thus 

( ) ( ) ( )
11 1 1

Pr , Pr
inT M S

ikt ikt ikt
st i k

y s y s Xδ
== = =

= = ⋅ =∑∏∏∏γy U     (16) 

where ( )Aδ  is an indicator function equaling 1 when event A  is true (and 0 otherwise). Now it is 
clear that the parameters of interest are ( )2, , , , ,λ ρ σVβ γ , together with unobserved (“nuisance”) 
variables θ  and U . One way to estimate these is via MCMC sampling under a Bayesian 
framework, as discussed below. 
 

4.  PARAMETER ESTIMATION VIA MCMC SIMULATION 
As discussed above, MCMC simulation can be used in model estimation by sampling 
sequentially from the parameters’ complete set of conditional distributions. Gelfand and Smith 
(1990) showed that MCMC sampling leads to consistent estimates of the true joint posterior 
distribution of all parameters (including “nuisance parameters”, such as 2,σV  and θ ). Using 
Bayes’ basic rule, the following formulation always holds true:  
 

( ) ( )2
0, , , , , , , ,p pλ ρ σV U U y yβ γ θ  

( ) ( )2 2
0 0, , , , , , , , , , , , , , , ,p λ ρ σ π λ ρ σ= y V U U V U Uβ γ θ β γ θ    (17) 



Here, 0U  is a vector for all individuals’ latent response levels in the initial period, ( )p •  

indicates posterior densities, and ( )π •  stands for prior distribution assumptions.  Assuming 
certain forms of independent priors, as discussed later, the posterior joint density 

( )2
0, , , , , , , ,p λ ρ σV U U yβ γ θ  will exhibit the following proportionality: 

( ) ( ) ( ) ( )
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2 2
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γ β
  (18) 

From Equation (18), the conditional distributions can be derived as follows, for each parameter 
and variable of interest. The βΘ  (or Θλ, Θθ , etc.) in these formulations represents the set of 
conditional arguments for the conditional distribution of β (or λ, θ, etc.). It includes all 
arguments except β (or λ, θ, etc.). (For example, βΘ  stands for the set 

( )2
0, , , , , ,λ ρ σ ,V U U , yγ θ .)  

( ) ( ) ( )0 , , , ,p π λ π∝ U U Vββ β θ βΘ       (19) 

( ) ( ) ( )2
0 , , , , ,p π λ π ρ σ∝ U U Vθ β θ θθΘ       (20) 

( ) ( ) ( )0 , , , ,p λλ π λ π λ∝ U U Vβ θΘ       (21) 
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00 0 0, , , ,p π λ π∝UU U U V Uβ θΘ       (26) 

( ) ( ) ( )0, , , , ,p p π λ∝UU y U U U Vγ β θΘ       (27) 
 
The formulations found in Equations 19 through 27 involve three factors: ( )0 , , , ,π λU U Vβ θ , 

( ),p y U γ  and ( )2,π ρ σθ , and the following paragraphs discuss these factors in more detail. 
 
From Equation (12), it can be observed that for all 0, 1...,t t T≠ = ,  

( )1, , , , ,t t t tNλ λ≠ − + +U U V U X L Vβ θ β θ , so the conditional prior distribution can be 
expressed as follows: 
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Therefore, for 1 2( , ,... )T ′=U U U U , one has the following: 
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Alternatively, this can be expressed as 
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Since ( ),p y U γ is already given by Equation (16) and ( )2,ρ σθ  is given by Equation (7), the 
following holds: 

( )2 2
2

1, exp
2

M
ρ ρ ρπ ρ σ σ

σ
− −⎛ ⎞′ ′= ⎜ ⎟

⎝ ⎠
B B Bθ θ θ      (31) 

 
4.1 Prior Distributions for All Parameters 
Diffuse priors are a valuable type of prior distribution commonly used in Bayesian statistics. 
These “non-informative” or “flat” priors reflect the notion of “letting the data speak for 
themselves.” For studies with no established prior information (such as this study), diffuse priors 
are a necessary starting point. Gelman et al. (2004) pointed out that diffuse priors imply that the 
posterior distributions for all parameters are weighted averages of standard maximum likelihood 
estimators and prior mean values. This implies that when the study enjoys a large sample, the 
dataset will overcome all prior information, asymptotically.  In this study, most priors take the 
forms assumed by Smith and LeSage (2004), while others are similar to those used in work by 
Girard and Parent (2001). All are diffuse. 
 
Here, the parameter set β  is assumed to have a multivariate normal conjugate prior: 

( ),N c Hβ           (32) 
 
where Qh=H I .  For small c and large h, this prior becomes diffuse. Of course, if one has valid 
reasons for specifying other values of c and h, it can be very helpful, particularly with small 
sample sizes (where priors carry more weight). Estimation may be improved through experience 
and intuition, which can impact selection of priors.  
 
Prior assumptions are similar with the threshold parameters:  

( ) ( )1 2 1, ... SN δ γ γ γ −< < <q Gγ        (33) 
 
where q  is a 1S ×  vector, with elements 0sγ , and G  is a diagonal matrix, with elements sg  on 
its diagonal and zeros elsewhere. In this way, the threshold parameters also follow a normal 
conjugate prior, only now with one more constraint to ensure that all probabilities derived from 



these thresholds are positive. So as q approaches zero and sg  approaches infinity, this also 
becomes a diffuse prior. 
 
The variances of regional effects 2σ  and individual effects iυ  are assumed to be conjugate 
inverse-gamma priors:  

( )21 ,σ α τΓ          (34) 
 
More specifically, 2σ  is given a diffuse prior by setting parameters 0α τ= = . All iυ  are 
assumed to follow an inverse chi-square distribution with hyperparameter ϖ , which is a special 
case of the inverse gamma: 

( )2
ir υ χ ϖ           (35) 

 
Here, the spatial autocorrelation coefficient ρ  is given a uniform prior that is diffuse. As Sun et 
al. (1999) prove, the lower and upper bounds for ρ  are determined by the inverse of eigenvalues 
from weight matrix W . Let minς  and maxς  denote the minimum and maximum eigenvalues; then,  

1 1
min max,Uρ ς ς− −⎡ ⎤⎣ ⎦          (36) 

 
In other words,  
( ) 1π ρ ∝           (37) 

 
Here,λ  is specified to have a normal distribution but limited to the range ( )1,1−  in order to 
ensure stationarity: 

( ) ( )0 , 1N Dλ λ δ λ <         (38) 
 
Selection of an initial value for the latent variable U is termed the “initial condition problem.” 
Many have discussed this complicated issue (e.g., Vishniac, 1993; Wooldrige, 2005; and Barlevy 
and Nagaraja, 2006). Here 0U  is assumed to be normally distributed, in order to be compatible 
with U’s distribution in other periods. It has the following prior:  
 

( )0 0 0,N NN a dU l I          (39) 
 
where Nl  is a 1N ×  vector with all elements equal to 1 and NI  is an N -dimension identity 
matrix. Therefore, this distribution approximates a diffuse prior when 0a  is bounded and 0d  
goes to infinity.  
 
4.2 Full Conditional Posterior Distributions 
Based on the conditional posterior distributions and the parameters’ prior distributions, this 
section explains how each parameter’s conditional posterior distribution can be mathematically 
derived.  



 
4.2.1 Conditional Posterior Distribution of β  
From Equations (19) and (31), it can be derived that 
( ) ( ) ( )0 , , , ,p π λ π∝ U U Vββ β θ βΘ  

( ) ( )

( ) ( )

1

1

1exp
2
1exp
2

λ λ

−

−

⎧ ⎫′∝ − − −⎨ ⎬
⎩ ⎭
⎧ ⎫′− − − − −⎨ ⎬
⎩ ⎭

c H c

U X U X

β β

θ β θ βΔ Ω Δ
    (40) 

 
As many previous studies show (e.g., Gelman et al., 2004; and Smith and LeSage, 2004), this 
form can be simplified to  

( ) ( ) ( )1 11exp
2

p − −⎡ ⎤′∝ − − −⎢ ⎥⎣ ⎦
A b A A bββ β βΘ      (41) 

where 1 1' − −= +A X X HΩ         (42) 
and ( )1 1λ− −′= − +b X U H cθΩ Δ .       (43) 
 
These equations indicate that the posterior mean vector for β  is 1−A b  and the variance-
covariance matrix is 1−A . In fact, as Gelman et al. (2004) show, such a posterior distribution is a 
weighted average of β ’s prior distribution and sample data information and the weights are the 
inverse of the variance-covariance matrices or associated “uncertainty” levels. Using maximum 
likelihood estimation methods, the estimator of β  is  

( ) ( )1-1 1ˆ
MLE

λ− −′ ′= −β θX X X UΩ Ω Δ        (44) 
 
Here, the prior mean of β  is assumed to be c  and its prior variance is assumed to be H. It is not 
difficult to show that the posterior mean can then be written as follows: 
( )

( ) ( )
( )

1

1 1 1 1

1 1 1 1

'

ˆ' '

E
λ

−

− − − −

− − − −

=

⎡ ⎤′= + − +⎣ ⎦
⎡ ⎤= + +⎣ ⎦

ββ

θ

β

A b

X X H X U H c

X X H X X H c

Ω Ω Δ

Ω Ω

Θ

    (45) 

 
In Equation (44), as sample size and information quality increase, the variance Ω  should 
decrease, which allows 1' −X XΩ to dominate, giving ˆ

MLEβ  more weight. 
 
4.2.2 Conditional Posterior Distribution of θ  

Some manipulation of Equations (20) and (30) can show that   

( ) ( ) ( )2
0 , , , , ,p π λ π ρ σ∝ U U Vθ β θ θθΘ  



( ) ( )1
2

1 1exp exp
2 2

λ λ
ρ ρσ

− −⎧ ⎫ ⎛ ⎞′ ′ ′∝ − − − − −⎨ ⎬ ⎜ ⎟
⎝ ⎠⎩ ⎭

θ β θ β θ θU X U X B BΔ Ω Δ

( ) ( )2 1 11exp 2
2

λ
ρ ρσ − − −⎧ ⎫⎡ ⎤′ ′ ′ ′= − + − − +⎨ ⎬⎣ ⎦⎩ ⎭

θ θ θ θ β θB B U X CΔ Ω Δ Ω Δ

( ) ( )2 1 11exp 2
2

λ
ρ ρσ − − −⎧ ⎫⎡ ⎤′ ′ ′∝ − + − −⎨ ⎬⎣ ⎦⎩ ⎭

θ θ β θB B U XΔ Ω Δ Ω Δ   (43) 

where C stands for the constant term, which does not involve θ . Similar to the derivation of the 
conditional posterior distribution for β , it can be shown that  

( ) ( ) ( )1 11exp
2

− −⎡ ⎤′∝ − − −⎢ ⎥⎣ ⎦
p A b A A bθ θ θ θ θθ θ θθΘ      (47) 

where 2 1
ρ ρσ − −′ ′= +A B Bθ Δ Ω Δ        (48) 

and ( )1−′= −b U Xλ
θ βΔ Ω .        (49) 

These equations indicate that the mean vector for θ  is 1−A bθ θ  and the variance-covariance 
matrix is 1−Aθ . It should be noticed here, however, that Aθ depends on ρB , which depends on 
ρ . That is, each random draw involves a matrix inversion. This computation demands much 
memory, especially when the number of regions ( M ) is large. Therefore, an appropriate 
sampling approach is very important. There are two alternative ways to calculate this matrix 
inverse. One is to compute the inverse directly; the other way, as Smith and LeSage (2004) 
suggest (when M  is larger), is to sample from univariate normal distributions for each iθ  
conditional on all other elements of θ  (excluding the ith element), which is the approach used 
here. 
 
4.2.3 Conditional Posterior Distribution of λ  

From Equations (20), (29), and (30), one can obtain the full form of λ ’s conditional posterior 
distribution, written as follows: 

( ) ( ) ( )0 , , , ,p λλ π λ π λ∝ U U Vβ θΘ  

( ) ( )

( ) ( ) ( )

1
1 1

1

1
0 0

1exp
2
1exp 1
2

T

t t t t t t
t

D

λ λ

λ λ λ λ δ λ

−
− −

=

−

⎧ ⎫′∝ − − − − − − −⎨ ⎬
⎩ ⎭
⎧ ⎫′− − − <⎨ ⎬
⎩ ⎭

∑ θ β θ βU U L X V U U L X
  (50) 

This is another conjugate distribution; so, similar to β’s conditional posterior distribution: 

( ) ( ) ( ) ( )1 11exp 1
2

p A b A A bλ λ λ λ λ λλ λ λ δ λ− −⎡ ⎤′∝ − − − <⎢ ⎥⎣ ⎦
Θ    (51) 

where 1 1
1 1

1

T

t t
t

A Dλ
− −

− −
=

′= +∑U V U        (52) 

and ( )1 1
1 0

1

T

t t t
t

b Dλ λ− −
−

=

′= − − +∑U V U X Lβ θ .     (53) 



One evident difference between this distribution of λ  and the distributions of β  and θ  is that 
this is a truncated normal. In each draw, the value of λ  needs to be limited to ( )1,1− . 
 
4.2.4 Conditional Posterior Distribution of ρ  
Equations (21), (30) and (36) lead to the following formulation for ρ ’s conditional posterior 
distribution: 

( ) ( ) ( )2,p ρρ π ρ σ π ρ∝ θΘ  

2

1exp
2ρ ρ ρσ
−⎛ ⎞′ ′∝ ⎜ ⎟

⎝ ⎠
θ θB B B       (54) 

and 1 1
min max,ρ ς ς− −⎡ ⎤∈ ⎣ ⎦ . As Smith and LeSage (2004) point out, this expression cannot be simplified 

into a standard distribution. They further suggest that one may use univariate numerical 
integration to obtain this posterior density, as described below. 

First, a range of ρ  values between 1 1
min max,ς ς− −⎡ ⎤⎣ ⎦  is generated from a uniform distribution. Before 

MCMC sampling, a vector of determinant values for ρB  corresponding to this range of ρ  
values can be constructed. Thus, during the iterative sampling process, only the second item 

( 2

1exp
2 ρ ρσ
−⎛ ⎞′ ′⎜ ⎟

⎝ ⎠
θ θB B ) needs to be updated for each draw. Equation (53) is then numerically 

integrated (via a sum of point-area estimates) over the range of ρ  values. The normalizing 
constant is obtained, given the condition that ρ  is limited to the interval 1 1

min max,ς ς− −⎡ ⎤⎣ ⎦ , and this 
renders Equation (53)’s proportionality an equality. After this approximation for ρ ’s CDF is 
acquired, one can randomly draw the ρ  value from its inversion. As Smith and LeSage (2004) 
have suggested, the advantage of this approach (over a standard Metropolis-Hastings approach) 
is that it is more efficient: each pass through the sampler produces a draw for ρ .  
 
4.2.5 Conditional Posterior Distribution of 2σ  
From Equations (22), (30) and (33), the following distribution for 2σ  can be obtained: 

( ) ( ) ( )2
2 2 2,p

σ
σ π ρ σ π σ∝ θΘ  

( ) ( ) ( )2 12 2
2 2

1exp exp
2

M α

ρ ρ
τσ σ

σ σ
− − +−⎛ ⎞ ⎛ ⎞′ ′∝ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
θ θB B

 
  (55) 

( ) ( )2 12
2

2
exp

2
M α ρ ρ τ

σ
σ

− + + ′ ′ +⎛ ⎞
= −⎜ ⎟

⎝ ⎠

θ θB B
 

This is an inverse gamma distribution with shape parameter 2M α− +  and scale parameter 

( )2 2ρ ρ τ′ ′ +θ θB B . 
 
Letting ( ) 22ρ ρκ τ σ′ ′= +B Bθ θ , so that ( )2 2ρ ρσ τ κ′ ′= +B Bθ θ , and following the work of 
Geweke (1993), Equation (54) can be expressed as follows: 



( ) ( )( ) ( )
2

22 12 2 exp
2

M dp
d

α

ρ ρσ

κ σσ τ κ
κ

− + + ⎛ ⎞′ ′∝ + −⎜ ⎟
⎝ ⎠

θ θB BΘ  

( )( ) ( ) ( )2 1

2

2
2 exp

2
M α ρ ρ

ρ ρ

τκτ κ
κ

− + + ′ ′ +⎛ ⎞′ ′= + −⎜ ⎟
⎝ ⎠

θ θ
θ θ

B B
B B

 
 (56) 

( )2 1 exp
2

M α κκ + − ⎛ ⎞∝ −⎜ ⎟
⎝ ⎠  

This density is proportional to a chi-square density with 2M α+  degrees of freedom (DOF). 
Alternatively, the conditional posterior of 2σ  can be expressed as 

( )2
2

2

2
2Mρ ρ

σ

τ
χ α

σ
′ ′ +

+
B Bθ θ

Θ        (57) 

 
4.2.6 Conditional Posterior Distribution of V  

From Equations (23) and (34), it can be shown that 

( ) ( ) ( )0
1

, , , ,
M

i
i

p π λ π υ
=

∝ ∏VV U U Vβ θΘ  

( ) ( ) ( )1 2 1

1

1exp
2

M

i
i

λ λ π υ− −

=

⎧ ⎫′∝ − − − − −⎨ ⎬
⎩ ⎭

∏U X U Xθ β θ βΩ Δ Ω Δ   (58) 

 
By letting λ= − −e U Xθ βΔ , the distribution of V  can also be derived term by term for each i : 

( ) ( )1 2 11exp
2ii ip υυ π υ− −⎛ ⎞′∝ −⎜ ⎟

⎝ ⎠
e eΩ ΩΘ  

12 2

1 11
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⎡ ⎤⎛ ⎞′ ⎛ ⎞
⎢ ⎥⎜ ⎟= − −⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
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1
2 2

1
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2 2
i

T
n T it it

i i
t i i

ϖ ϖυ υ
υ υ
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=

⎛ ⎞′ ⎛ ⎞
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Similar to the derivation of 2σ ’s posterior distribution, letting 1

T

it it
t

i
i

ϖ
κ

υ
=

′ +
=
∑e e

, then this can 

be shown as the following chi-square distribution: 
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       (60) 

 
Therefore, it follows a chi-square density with ir n T+  degrees of freedom, i.e., 

( )21
i

T

it it
t

i
i

n Tυ

ϖ
χ ϖ

υ
=

′ +
+

∑e e
Θ        (61) 

Similar toβ , Smith and LeSage (2004) show that the posterior mean of iυ  is a weighted average 
of the maximum likelihood estimator îυ  and the prior mean, iμ , which equals ( )2ϖ ϖ − . In the 
dynamic model, the weights can be calculated using a method very similar to that suggested by 
Smith and LeSage (2004). These weights are in T  and 2ϖ − , respectively. 
  
As expected, this means that more weight is given to the sample information as sample size in  
or the panel length, T , increases. ϖ  needs to be larger than 2, but also needs to be kept small if 
one wants to use a diffuse prior. Here the hyperparameter ϖ  is assumed to be 4.  
 
4.2.7 Conditional Posterior Distribution of γ  
Equations (16), (24), and (32) lead to the following formulation for the conditional posterior 
distribution of γ : 
 
( ) ( ) ( ),p p π∝ y Uγγ γ γΘ  

( ) ( )1
11 1 1

inT M S

ikt s ikt s
st i k

y s Uδ δ γ γ−
== = =

⎡ ⎤
∝ = < <⎢ ⎥
⎣ ⎦

∑∏∏∏     (62) 

( ) ( )1 2 1, ... SN δ γ γ γ −< < <q G  
 
This equation can be considered term by term for 1,... 1s S= − , by only extracting terms that 
involve sγ : 

( ) ( ) ( )
1 1 1 1 1 1

1
i i

s

n nT M T M

s r ikt s ikt ikt s ikt
t i k t i k

p U y s U y sγ δ γ δ γ
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g
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    (63) 



With { }{ }inf
1max max : ;s ikt ikt sU y sγ γ −= =        (64) 

and { }{ }sup
1min min : 1 ;s ikt ikt sU y sγ γ += = + , for , ,ii M k n t T∀ ∈ ∈ ∈ .  (65) 

 
Similar to the derivation for λ , this is a truncated normal distribution. The normalizing constant 
can be found using a univariate normal distribution, with the given lower and upper bounds. The 
major difference is, however, that these lower and upper bounds are interdependent, which may 
make the final posterior distribution multimodal. 
 
4.2.8 Conditional Posterior Distribution of 0U  
Substituting Equations (29) and (38) into Equation (25), one can get the following formulation: 
 
( ) ( ) ( )

00 0 0, , , ,p π λ π∝UU U U V Uβ θΘ   
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  (66) 

Deriving 0U  term by term for each i and k, by extracting only items involving 0ikU , Equation 
(66) reduces to: 

( ) ( ) ( )
0

2 2
1 0 1 0 0

0
0

exp
2 2ik

ik ik i ik ik
ik U

i

U U U a
p U

d
λ θ

υ

⎡ ⎤− − − −
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X βΘ    (67) 

 
This is a univariate normal distribution. Thus, similar to the posterior distribution calculations 
for β , the distribution is as follows:  
 

( )0

1 1
0 0 0 0,

ikik U U U UU N A b A− −Θ        (68) 

where 2 1 1
0 0U iA dλ υ − −= +         (69) 

and ( )1 1
0 1 1 0 0U i ik i ikb U d aλυ θ− −= − − +X β .      (70) 

 
4.2.9 Conditional Posterior Distribution of U  

For latent variables other than the initial status, Equations (15), (26), and (29) lead to the 
following formulation:  

( ) ( ) ( )0, , , , ,p p π λ∝UU y U U U Vγ β θΘ    
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X β
  (71) 



iktU  appears in the formulation for both periods t  and 1t + . Therefore, for any , ,i k t  observation, 
by extracting only items involving iktU , the posterior distribution for iktU  can be expressed as 
follows:  

( ) ( ) ( ) 1
1

1
ikt

S

ikt U ikt s ikt s i
s

p U y s Uδ δ γ γ υ −
−

=
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( ) ( )2 2
1 1 1

1exp
2 ikt ikt i ikt ikt ikt i ikt
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U U U Uλ θ λ θ
υ − + +
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X Xβ β  

This is a truncated normal distribution. The first expression in Equation (3.74),  

 ( ) ( )1
1

S

ikt s ikt s
s

y s Uδ δ γ γ−
=

⎡ ⎤= < <⎣ ⎦∑   

indicates that if ikty s= , the distribution is truncated on the left by 1sγ −  and on the right by sγ . 

The last item in Equation (71), ( ) ( )2 2
1 1 1

1exp
2 ikt ikt i ikt ikt ikt i ikt
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U U U Uλ θ λ θ
υ − + +

⎧ ⎫⎡ ⎤− − − − + − − −⎨ ⎬⎣ ⎦⎩ ⎭
X Xβ β  

suggests that the un-truncated part is a normal distribution. This part has mean ikta  and variance 

iktb . (Readers may wish to see Appendix B for more details on this.)   
 
Here, ( ) ( ) ( )2

1 1 11 1ikt ikt ikt i ikt ikta U Uλ λ λ θ λ λ+ − +⎡ ⎤= + + − + − +⎣ ⎦X X β   (73) 

and ( )21ikt ib υ λ= + .         (74) 
 
Therefore, for each ,i k  and each 1,... 1t T= − , 
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S
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s
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A special case is that, when t T= , ikTU  only appears in the exponential term with 1ikTU − . That is, 
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This also is a truncated normal distribution. The (un-truncated) normal distribution has a mean 

1ikT ikT i ikTa Uλ θ−= + + X β  and variance iυ ;  and, if ikTy s= , the distribution is truncated on the 
left by 1sγ −  and on the right by sγ .  
 

4.3 MCMC SAMPLER 

The MCMC sampling process begins with an initial parameter set ( )0 0 0 0 0 0 0, , , , , ,λ ρ σ V Uβ γ , 
where superscripts indicate the current number of draws, or iteration step (for value updating.) 
All parameters or variables of interest are sampled sequentially and updated parameter values are 
then used to replace the initial values. The whole process is carried out iteratively by always 



using the most recent values of the parameters and variables, until the desired number of draws is 
achieved. The flowchart for sampling the parameters of interest is shown as Figure 1. 

 
Input M , ( ),y X , and initial parameter values ( )0 0 0 0 0 0 0, , , , , ,λ ρ σ V Uβ γ  

r R> ?

Parameter set with R  draws 

No

Yes

Sample 1 , , , , , , , ,r r r r r r r rρ λ σ+ V U y Xβ θ γ  with normal distribution 

Sample 1 1, , , , , , , ,r r r r r r r rρ λ σ γ+ + V U y Xθ β  with normal distribution 

Sample 1 1 1, , , , , , , ,r r r r r r r rρ λ σ γ+ + + V U y Xβ θ  with numerical integration  

Sample 1 1 1 1, , , , , , , ,r r r r r r r rλ ρ σ γ+ + + + V U y Xβ θ  with truncated normal distribution 

Sample 1 1 1 1 1, , , , , , , ,r r r r r r r rσ ρ λ γ+ + + + + V U y Xβ θ  with chi square distribution 

Sample 1 1 1 1 1 1, , , , , , , ,r r r r r r r r
iυ ρ λ σ γ+ + + + + + U y Xβ θ  with chi square distribution  

Sample 1 1 1 1 1 1 1, , , , , , , ,r r r r r r r rρ λ σ+ + + + + + +V U y Xγ β θ  with truncated normal distribution 

Sample 1 1 1 1 1 1 1 1
0 , , , , , , , ,r r r r r r r rρ λ σ+ + + + + + + +U V y Xβ θ γ  with normal distribution 

Sample 1 1 1 1 1 1 1 1, , , , , , , ,r r r r r r r r
t ρ λ σ+ + + + + + + +U V y Xβ θ γ  with truncated normal distribution 

Sample 1 1 1 1 1 1 1 1, , , , , , , ,r r r r r r r r
T ρ λ σ+ + + + + + + +U V y Xβ θ γ  with truncated normal distribution  

Store ( )1 1 1 1 1 1 1 1, , , , , , ,r r r r r r r rρ λ σ+ + + + + + + +V Uβ θ γ   

1r r= +  

 
Figure 1 Flowchart for the MCMC Simulation 



5. SIMULATED DATASET 
Instead of using empirical data, the dynamic spatial ordered probit (DSOP) model is tested using 
a simulated dataset. Because such self-generated data have known parameter values and 
controlled interactions, they are more reliable for evaluating performance of the model 
specification and the proposed estimation techniques.  
 
In the simulated dataset, there are 30 regions, each containing 10 individuals observed over 8 
time periods. Each individual has a response level of 1, 2, or 3. That is, 30M =  and 10,in i= ∀ , 
(so that 300N = ), 8T =  and 3S = . There are 300 8 2400× =  observed responses in total and 3 
possible levels. Figure 2 shows the location of these 30 regions. The weight matrix is generated 
based on (queen) contiguity. For example, region 10 is considered contiguous with regions 3, 4, 
5, 9, 11, 15, 16 and 17. It is then row-standardized. 
 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 
 

Figure 2 Location of Regions in Simulated Dataset 
Note: Region 10 and its contiguous neighbors are shown in grey. 

 
The region-specific effect is generated using the following formulations: 

( )M ρ= −θ I W u         (77) 

( )20, MN σu I         (78) 
where the spatial autocorrelation coefficient ρ  is set to be 0.1, 0.6, 0.7 and 0.9 in different 
experiments. The variance 2σ  is equal to 1 so that u  for each region follows an iid standard 
normal distribution.  
 
The individual-specific variables are normally distributed independently and heteroskedastic 
over the regions. Assumed values of variance 1v  through 30v  are shown in Figure 3: 
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Figure 3 Assumed Variances of Individual Specific Effects across Regions 

 
The specific value of each variance is set arbitrarily, between 0.4 and 1.5. This range of 
magnitudes helps ensure that the uncertainties caused by individual specific errors are important 
but do not overwhelm/dominate latent variables’ effects, which is felt to be the most common 
case in reality. The variance for region 1 is fixed at its true value in estimation, which is 
necessary for identification.3  
 
The explanatory variables include the lagged utility (unobserved dependent variable) 1tU −  and 
four other observed values. The temporal autocorrelation coefficient λ (i.e., the parameter for the 
lagged dependent variable) is set to equal 0.1, 0.5 and 0.9 in different experiments. The four 
variables are generated using a standard uniform distribution (bounded between 0 and 1). Their 
corresponding parameters (slope coefficients) are arbitrarily set as -1.7, 2, 1 and 0.5, respectively.  
There are S=3 ordered categories, with thresholds γ1=0 and γ2=2.1. To summarize, the dataset is 
generated using the following model assumptions: 

1 1 2 3 40.5 1.7 2 0.5t−= − + + + + +θ εU U x x x x     (79) 
where 1=y  if 0≤U , 2=y  if 0 2.1< ≤U , and 3=y  if 2.1>U  
and θ  is multivariate normal vector of region-specific effects with zero mean and variance 
matrix ( )M ρ−I W , where ρ  is set to equal 0.1, 0.6, 0.7 and 0.9, across separate experiments. As 
noted above, ε  is a normally distributed individual-specific error term with zero mean and 
variable variance (heteroskedastic) across regions. (The variances of these error terms range 
from 0.4 to 1.5. (Figure 3)) 
 
6 MODEL ESTIMATION AND VALIDATION 
The simulated data samples were analyzed using the DOSP model. The resulting estimates are 
compared here to their true values, in order to appreciate the model’s estimation ability. 
However, in addition to the identification problem mentioned above, the use of small simulated 
data samples involves other potential problems. These problems need to be carefully handled 
before a robust model evaluation can be achieved. 
 

                                                 
3 This can be inferred from Figure 21.4 in Greene (2002): in an OP model, parameters and variances can be scaled 
simultaneously (so that the normal curve becomes flatter or sharper), with probabilities remaining constant. In other 
words, it is necessary to normalize at least one of the parameters or variances for the purpose of identification. 



The first problem lies in the simulated sample data itself: in the process of random number 
generation, extreme values can appear.  To address this, researchers often use a high number of 
draws (to try to avoid the influence of extreme values). Here, however, the simulated sample 
data also are randomly generated. (As noted in Section 5, x  was generated from a standard 
uniform distribution, and u  andε  were generated using a standard normal distribution.) Unlike 
the number of draws used for estimation, the sample size here cannot be too large because a 
linear increase in sample size leads to an quadratic increase in computational burden. With 2,400 
data points, the influence of extreme values is almost inevitable and “bad” samples are very 
likely to be generated. For example, the individual effect error term can become so large that it 
masks the contribution of explanatory variables and regional effects, leading to the conclusion 
that spatial autocorrelation or the influence of certain variables is insignificant.  
 
Another example is that the values of explanatory variables and error terms may happen to be 
large for all data points, leading to a set of high latent dependent variable values, which means 
that few cells get labeled as Level 0. With such skewed data, the estimation may yield unreliable 
results. In order to neutralize this effect, for each parameter set, the data was re-generated 50 
times, producing 600 samples (50 replicates × 4 ρ  values × 3 λ  values = 600). The averages of 
their estimated means and standard deviations are discussed below.  
 
A second problem is estimation convergence. With a Bayesian approach, proof of convergence 
is a complicated issue. In this study, the estimation is assumed to converge when sampled 
parameter distributions appear to stabilize. Ideally, the number of draws (R) should be set as high 
as possible, but computational time and memory requirements also need to be taken into account. 
Especially when 600 samples (each containing 2,400 data points with complicated interactions) 
are to be analyzed, computational efficiency is an important consideration. Several R values 
were examined first here, for a small number of samples. Their estimation performances and 
computational intensities were evaluated, and the final selection was R = 2,000 since, beyond 
this number of draws, model the results no longer noticeably improved. Furthermore, after 1,000 
runs, the distributions of all parameters appear stable. Therefore, the first 1,000 runs were 
omitted (burn-in) and the mean and standard deviation are both calculated based on the final 
1,000 draws. 
 
As described above, 600 simulated data samples were generated and their parameters then 
estimated with diffuse priors. The averages of all parameter estimates’ means are shown in Table 
1. Table 1 also uses root mean squared errors (RMSE)4 to describe estimation accuracy for each 
parameter set. As can be observed, all RMSEs lie below 1. Considering the magnitudes of the 
parameter values, the estimation results are quite close to true values.  
 
Some interesting tendencies are apparent. As the temporal autocorrelation coefficient (λ ) 
increases, the magnitudes of coefficients and variances for both individual and regional specific 
effects tend to exhibit higher bias (as shown in Table 1 and Figure 4). One reason for this 
phenomenon is that, as λ  increases, the influence of temporally lagged, latent response values 
                                                 
4 RMSE is the square root of mean squared error (MSE), which is (an estimate of) the expected value of the squared 
“error” (i.e., the difference between estimated and true values). This indicator is often used in assessing a forecasting 
model’s predictive power (Greene, 2002). It also can be used to evaluate estimation accuracy when true parameter 
values are known. A larger RMSE value indicates an increase in variations that the model does not account for. 



rises, adding uncertainty to the right-hand side of the model. In the estimation process, this 
uncertainty will be partially ascribed to the error terms, which leads to larger estimates of 2σ  
and iυ , i M∀ ∈ . As mentioned in Section 5, this process will in turn produce higher β  
estimates (to accommodate the increase in scale).  
 
An increase in the spatial autocorrelation coefficient (ρ) also leads to greater bias. As can be 
expected, when positive spatial correlation exists but is not fully recognized, the coefficients tend 
to be more biased because areas with higher response magnitudes will have a greater impact on 
model estimates. 
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Figure 4 Variances of Individual Specific Errors with 70 Samples 
 
In fact, this consistency problem is very common for nonlinear panel data models and dynamic 
models (see, e.g., Neyman and Scott, 1948) and has been studied for many years. A larger 
sample (larger N) and longer panel (larger T) may reduce this bias (Arellano and Hahn, 2005). 
Researchers also have proposed various approaches to reduce bias and achieve consistency with 
smaller N and T values (see, for example, Alvarez and Arellano, 2003, and Bester and Hansen, 
2007). An efficient bias-reduction technique for the DSOP model makes an interesting topic for 
future study, but is not the focus here. In fact, such overestimation (due to increases in λ ) 
appears to be slight here: all biases in slope parameters lie below 10%. Bias in estimates of the 
variances of individual specific errors ( iυ ) are higher. However, as can be observed in Figure 4, 
with the exception of the extreme case (where both λ and ρ are 0.9), biases in all other cases lie 
well below 100% and their relative magnitudes appear close to the true pattern. 
 
In summary, the DSOP model performs well with the simulated data. It satisfactorily detects the 
temporal and spatial interaction effects as well as the influence of different variables. 
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Table 1 Estimation Results using Simulated Data (Averages from 50 Samples) 

Parameter 

True 
Value  Average of Means from Estimated Parameter Distributions 

λ  0.1 0.1 0.1 0.1 0.5 0.5 0.5 0.5 0.9 0.9 0.9 0.9 
ρ  0.1 0.6 0.7 0.9 0.1 0.6 0.7 0.9 0.1 0.6 0.7 0.9 

1β  -1.7 -1.701 -1.715 -1.712 -1.888 -1.727 -1.776 -1.801 -1.887 -1.841 -1.833 -1.881 -1.822

2β  2.0 1.965 1.984 2.019 2.125 2.046 2.049 2.097 2.278 2.191 2.140 2.105 2.154

3β  1.0 0.965 0.972 1.004 1.012 1.012 1.030 1.033 1.129 1.046 1.090 1.072 1.086

4β  0.5 0.519 0.519 0.543 0.551 0.542 0.518 0.554 0.646 0.561 0.545 0.539 0.647

λ  – 0.097 0.101 0.099 0.097 0.492 0.507 0.514 0.511 0.919 0.921 0.909 0.863
ρ  – 0.048 0.452 0.572 0.845 0.039 0.494 0.623 0.863 -0.001 0.498 0.616 0.855

2σ  1.0 1.054 1.091 1.117 1.832 1.158 1.217 1.302 1.768 1.290 1.232 1.307 1.498

1γ  0.0 -0.223 -0.133 -0.112 0.006 0.094 -0.333 -0.358 -0.351 -0.202 -0.330 -0.177 -0.138

2γ  2.1 1.818 1.933 2.009 2.276 2.190 1.803 1.834 2.075 2.090 1.956 2.130 2.342

Average RMSE 0.371 0.278 0.231 0.883 0.225 0.517 0.566 0.930 0.445 0.492 0.429 0.630
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7. MODEL COMPARISONS 
To further validate the DSOP model, its performance is compared to those of simpler models (all 
estimated using a Bayesian approach), based on a data set that provides a balanced mix of the 
three levels of the 50 samples. These simpler models include a standard ordered probit (OP) 
model; a dynamic ordered probit (DOP) model, which still allows for spatial heterogeneity but 
not spatial autocorrelation; and a spatial ordered probit (SOP) model, which incorporates all 
spatial effects but does not consider the temporal dependency. Data statistics for this sample are 
shown in Table 2, and the histogram of y values (Figure 5) indicates that enough observations 
exist for each level.  

Table 2 Summary Statistics for One Sample 

Variable Mean Standard 
Deviation Minimum Maximum 

x1 0.4978 0.2873 6.579E-04 9.995E-01 
x2 0.4994 0.2893 5.842E-04 9.990E-01 
x3 0.4936 0.2901 4.174E-05 9.999E-01 
x4 0.4877 0.2895 3.049E-05 9.998E-01 

 

 
Figure 5 Histogram of Dependent Variable Values 

 
As before, these models are run with 2,000 draws of which the first 1,000 draws are omitted (as 
a burn-in sample). As an example, Figure 6 shows the estimation convergence pattern for 1β . 
Estimates of other parameters follow a similar pattern. The figure suggests that after the first 
1,000 draws, the estimation becomes stable and may be convergent.  
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Figure 6 Estimation Convergence Pattern for 1β  

 
Table 3 shows the estimation results for this sample. In addition, Figure 7 depicts estimates of iυ  
( i M∀ ∈ ), using the DSOP model, where lower and higher bounds are defined as 1st percentile 
and 99th percentile values. Mean estimates lie quite close to true values. Considering that only 80 
observations are effectively used to estimate each iυ , the standard deviations are understandably 
large. 
 

Table 3 Estimation Results using One Sample and Different Specifications  

Param. True 
Value 

OP DOP SOP DSOP 

Mean Std. 
Dev. Mean Std. 

Dev. Mean Std. 
Dev. Mean Std. 

Dev. 
1β  -1.7 -0.807 0.079 -1.581 0.104 -1.621 0.117 -1.608 0.119

2β  2.0 1.727 0.078 2.201 0.112 2.150 0.128 2.166 0.128

3β  1.0 0.999 0.079 1.043 0.107 1.014 0.099 1.000 0.097

4β  0.5 0.634 0.076 0.502 0.089 0.461 0.092 0.469 0.098
λ  0.1 --- --- 0.131 0.023 --- --- 0.110 0.021
ρ  0.7 --- --- --- --- 0.769 0.098 0.751 0.098

2σ  1.0 --- --- 2.182 0.742 1.323 0.426 1.116 0.342

2γ  0.0 -0.203 0.014 -0.372 0.038 -0.226 0.084 0.081 0.057

3γ  2.1 1.264 0.009 1.811 0.029 1.980 0.032 2.261 0.013
RMSE 1.769 1.472 0.463 0.293 
DIC 4360.4 3098.0 3106.1 3070.7 
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Figure 7 Variances of Individual Specific Errors with One Sample 

 
Table 3 also shows RMSE and deviance information criteria (DIC)5 values for each specification. 
As before, RMSE indicates estimator accuracy. The DIC is an indicator of model fit. Both 
suggest that the DSOP model more accurately estimates the underlying parameters, with high 
statistical significance and fit of the sample data. In contrast, because of the inability to detect λ  
and ρ , the OP model’s estimates are highly unsatisfactory. As shown in Table 3, it returns the 
appropriate signs and relative magnitudes for β parameters, but estimates deviate from true 
values quite a bit. The performances of the DOP and SOP models lie in-between. Though 
inferior to the DSOP model results, they are rated better than the OP model. RMSE measures 
suggest that the SOP model yields much more accurate estimates than the DOP model, which is 
quite understandable given the fact that λ  is only 0.1 and ρ  is 0.7 in this particular sample. In 
other words, ignoring the temporal autocorrelation (i.e., restricting a 0.1 parameter to equal 0) 
should typically have less of an impact than a situation where one ignores a spatial 
autocorrelation term of 0.7.  Interestingly, the DIC fit measure, suggests that the DOP model is 
very slightly preferred to the SOP model. The DOP model’s smaller DIC value implies that, 
while the DOP model is not as able to produce accurate parameter estimates, it still fits sample 
data better than the SOP model, because it still accounts for spatial heterogeneity.  
 
Table 4 illustrates predictive accuracy using the four methods. The standard OP model only 
correctly predicts dependent values for 47.0% of the 2,400. observations. The DOP model 
increases this percentage to 60.8%. The SOP model’s prediction rate is quite close to that of the 
DSOP model: 66.4%. Such a percentage is fairly satisfactory, given the presence of three 
response levels and considerable randomness in the sample dataset ( 2σ  and iυ  in the simulated 
data have similar magnitudes as all slope parameters, causing regional-specific and individual-
specific errors to have a similar level of influence on latent response values).  
 

Table 4 Prediction Rates using Different OP Model Specifications 
                                                 
5 The deviance information criterion (DIC) is a generalization of the Akaike information criterion (AIC) and 
Bayesian information criterion (BIC). It is particularly useful for Bayesian model comparison and selection (see 
Gelman et al., 2004, and Spiegelhalter et al., 2002). However, one limitation of the standard DIC is that it is only 
valid when posterior distributions are approximately multivariate normal. For models involving extremely 
asymmetric or bimodal posterior distributions (which happens for the DSOP model), some modified DIC need to be 
used instead. This study uses the DIC calculation method for mixture models proposed by Celeux et al. (2006). 
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Response Value (y) 

Actual 
Total 

% Cases 
Correctly 
Predicted 1 2 3 

Predicted 

OP 
1 55 145 100 300 

47.0% 2 106 372 372 850 
3 100 448 702 1250 

DOP 
1 124 154 97 375 

60.8 2 116 511 253 880 
3 21 300 824 1145 

SOP 
1 121 133 20 274 

65.1 2 124 536 249 909 
3 16 296 905 1217 

DSOP 
1 121 112 17 250 

66.4 2 119 583 268 970 
3 21 270 889 1180 

Total 261 965 1174 2400  
 
Such comparisons, of prediction rates, RMSE and DIC values, suggest that the DSOP model is 
superior to all the simpler models, as anticipated. It is followed by the SOP model, indicating the 
importance of recognizing the spatial autocorrelation in the dataset. Recognizing temporal 
dependency also significantly improves model performance, relative to a standard OP model. In 
this example study, this improvement is not as evident as recognizing the spatial autocorrelation, 
but this is partially due to the small true value of the temporal coefficient, λ . The OP model, 
though easy to specify and estimate, does not adequately utilize the observed information, thus 
returning inaccurate parameter estimates and response predictions.  
 
8. CONCLUSIONS 
Many data sets involve latent (unobserved) variables exhibiting underlying spatial interactions 
and temporal dependency patterns. Examples include land use change, voting outcomes, 
destination and location choices, crash counts (over a network), and traffic condition ratings. 
These examples all present two common features. First, the variables of interest are indicators or 
censored versions of unobserved variables. Second, they all exhibit certain degrees of temporal 
and spatial autocorrelation. Such phenomena also exist in other fields, like ecology, biology and 
anthropology. To capture these temporal and spatial patterns and accurately estimate the impacts 
of potentially influential factors, a rigorous statistical method for analyzing such data is needed. 
The dynamic spatial ordered probit (DSOP) model established in this study meets this need.  
The DSOP model analyzes ordered response data based on latent variables exhibiting and spatial 
dependencies as well as individual heterogeneity. First, as in Smith and LeSage (2004), the 
model incorporates spatial effects by allowing for both regional spatial interactions and 
heteroskedasticity across observations from different regions. Second, the model allows for an 
AR(1) process via the latent, lagged dependent variable, thus recognizing dynamic features. 
Third, when compared to existing spatial discrete choice models, the DSOP model is the first to 
emerge from an ordered probit model, where multiple levels of ranked categorical data can be 
analyzed.  
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The models developed here were estimated in a Bayesian framework using MCMC sampling 
and data augmentation techniques (to generate the autocorrelated latent variables). The 
estimation process approximates the parameter set’s joint probability using a set of conditional 
distributions. To achieve this, proper prior distributions for parameters and nuisance terms 
(latent dependent variables and variances) were assumed and their posterior distributions then 
derived. These posterior distributions include common distributions (like the truncated normal 
and chi square), mixture distributions (combining a normal and multivariate uniform), and 
nonstandard distributions (offering no closed-form expressions for hyperparameters). Matlab 
code was developed to draw from these distributions.  
 
This study also renders some general insights into the pragmatic advantages of a Bayesian 
framework over a frequentist method6. For this type of work, the Bayesian approach appears 
more straightforward and much easier to apply than maximum (simulated) likelihood estimation 
(MSLE). Especially for models involving complicated statistical distributions and multi-layered 
specifications (as with the DSOP model), the advantage of a Bayesian framework is evident. By 
using “conditional” distributions, the Bayesian approach decomposes the joint estimation of 
many variables into much simpler, sequential simulations. In contrast, maximum (simulated) 
likelihood estimation (MSLE) must tackle an intractable likelihood function (and its gradients 
and possibly its Hessian matrix, with respect to the parameter set) (see, e.g., Wang and 
Kockelman [2008]). With a Bayesian framework, a slight change in model specification only 
requires modifying a part of the simulation procedure. With MSLE, on the other hand, the model 
estimation method may need to be completely overhauled. However, the Bayesian approach also 
has its limitations. For example, in this study, because the estimation involves simulating latent 
variables and one (multivariate) posterior distribution (for threshold terms) is multimodal, 
marginal effects and the model’s goodness of fit need to be calculated simultaneously with the 
simulation. Otherwise, if an indicator (such as the deviance information criterion) needs to be 
obtained afterwards, the model must be completely re-run, which can be rather time consuming.  
 
The DSOP model specification and estimation methods were validated using 50 simulated 
datasets, for each of the 12 parameter sets. The results produced estimates that are quite close to 
true values. The comparison highlighted the accuracy of the DSOP model, while recognizing 
report temporal and spatial autocorrelation patterns.  As detailed spatial data sets become 
available to regional scientists and others, it behooves us to unleash their potential, by 
recognizing the spatial relationships that exist and exploiting their presence. The DSOP model 
and the estimation methods described here offer us the opportunity of a more appropriate 
approach. 
 
 

                                                 
6  Of course, much has been written (e.g., Geweke, 1993; Gelman et al., 2004; and Koop et al. 2007) about the 
differences in classical and Bayesian statistical viewpoints. Much of the discussion is somewhat “philosophical” in 
nature, and “superiority” has never been conclusively determined (Gelman et al., 2004). 
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