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ABSTRACT 

Two competing approaches to travel demand modeling exist today.  The more traditional “4- 

step” travel demand models rely on aggregate demographic data at a traffic analysis zone (TAZ) 

level.  Activity-based microsimulation methods employ more robust behavioral theory while 

focusing on individuals and households.   While the vast majority of U.S. metropolitan planning 

organizations (MPOs) continue to rely on traditional models, many modelers believe that 

activity-based approaches promise greater predictive capability, more accurate forecasts, and 

more realistic sensitivity to policy changes. 

 
Little work has examined in detail the benefits of activity-based models, relative to more 

traditional approaches.  In order to better understand the tradeoffs between these two 

methodologies, this paper examines model results produced by both, in an Austin, Texas 

application.  Three scenarios are examined here:  a base scenario, a scenario with expanded 

capacity along two key freeways, and a centralized-employment scenario. Results of the 

analysis reveal several differences in model performance and accuracy, in terms of replicating 
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travel survey and traffic count data.  Such distinctions largely emerge through differing model 
assumptions.  In general, activity-based models are more sensitive to changes in model inputs, 
supporting the notion that aggregate models ignore important behavioral distinctions across the 
population.  However, they involve more effort and care in data manipulation, model calibration 
and application in order to better mimic behavioral processes, at a finer resolution.  Such efforts 
help ensure that synthetic populations match key criteria and that activity schedules match 
surveyed behaviors, while being realistic and consistent across household members. 
 
Keywords: Travel demand modeling, microsimulation of travel demand, activity-based models, 
tour-based models, model comparison 
 
INTRODUCTION 
Traditional travel demand models (TDMs) use a four-step process based on demographically 
(and spatially) aggregate data.  While widely used for many years, this method has many 
drawbacks, including limited behavioral theory, disregard of intra-household constraints, and 
neglect of tour-based dependencies in mode, departure time, and destination choice.  Continuity 
in activity participation and recognition of the various interdependencies in activity timing and 
other travel attributes allow greater realism in models of travel demand.  Methods that allow for 
this continuity, such as activity-based modeling and microsimulation, are heralded as offering a 
considerable advantage over traditional methods.  Moreover, activity-based modeling is better 
suited to current transportation planning interests, as emphasis has switched from long-term 
capital improvement projects to shorter-term congestion management strategies, such as 
alternative work schedules and congestion pricing (Bhat and Koppelman 1999).  While 
substantial effort has been devoted to developing activity-based models and application of 
microsimulation methods, little research has focused on comparing these to more traditional 
model specifications.  This work undertakes such a comparison for the region of Austin, Texas. 
 
This paper compares trip-based to tour-/activity-based models, as well as traditional aggregate 
methods to microsimulation techniques. The results of applying a microsimulation activity-based 
TDM to a synthetic Austin population are compared to those of a relatively traditional model, 
offering insights into the tradeoffs between such approaches, in terms of accuracy, both in 
development and application.  Other differences examined here include modeling sensitivities to 
policies and investments that should affect travel behavior. Comparisons include estimates and 
observations of traffic flows during peak hours and off-peak hours, total vehicle hours traveled 
during peak and off-peak hours, and mode shares. Such relationships are important when 
considering a variety of potential strategies for managing traffic congestion, improving quality of 
life, and forecasting a region’s future. 
 
One way in which the models differ is their required inputs.  The aggregate model uses zonal 
averages for household information.  Households were assigned to different types based on three 
household characteristics:  household size, the presence of children, and household income.  A 
total of 27 household types were considered.  The activity-based model relies on disaggregate 
socioeconomic information (such as household size and composition, income, age, gender, and 
employment status of household members). Both rely, to some extent, on aggregate zonal land 
use data for trip generation models; and, for their sub-models’ estimation, both rely on the same 
network and system level-of-service (LOS) characteristics (of interzonal costs and times across 
two time of day/periods [peak and off-peak]).   
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The following sections discuss related investigations, the data and model specifications used 
here, and the scenarios evaluated for results comparison across both TDM approaches.  The final 
section offers some conclusions as well as recommendations regarding modeling directions. 
 
LITERATURE REVIEW 
A key feature of the newest TDMs is their use of disaggregate data, synthesis of micro-
population features, and simulation of individual behaviors.  This enhancement allows for greater 
precision (and stratification) in results and a greater reliance on behavioral theory. 
Microsimulation of travelers and their regional perambulations is the focus of this paper.  
Microsimulation involves the sampling of individual households and persons using multivariate 
distributions for base demographic data.  This population of travelers may be assigned both 
home and job locations as well as a series of simulated daily activity patterns. Detailed travel 
itineraries, including mode and route assignments, strive to mimic realistic activity patterns while 
recognizing the travel choices of other household members.  Existing models include MORPC 
(PB Consult Inc. 2005), TRANSIMS (http://tmip.fhwa.dot.gov/transims/), ILUTE (Miller and 
Salvini, 2001), CEMDAP (Bhat, et al., 2001), and ALBATROSS (Arentze and Timmermans, 
2000), among others.  Activity-based models in practice today include Columbus, Ohio’s 
MORPC, the San Francisco Bay Area’s SFCTA, New York City’s NYMTC, Atlanta’s ARC, and 
Portland’s METRO (Vovsha, et. al, 2004).  While all these models share certain characteristics, 
their details differ.  Additionally, none offers a clear, applications-based comparison to a 
traditional TDM, as sought here.   
 
The Mid-Ohio Region Planning Commission (MORPC) model has generated a lot of interest, 
and was the basis for the activity-/tour-based model structure used here.  It relies on a nested 
logit framework for all its main modules (Anderson, 2005).  And its tour production module 
recognizes the interdependence of household members, unlike many current models (which 
determine trip and tour attributes independently across household members [Vovsha, et al., 
2003]).   
 
While the MORPC and other models incorporate various emerging aspects of microsimulation 
and activity-based modeling, there is very little research directly comparing traditional, 
aggregate methods and microscopic modeling techniques.  Walker’s (2005) models of Las 
Vegas, Nevada offered a direct comparison, though the microsimulation model relied on a trip-
based format (which does not allow for mode, scheduling or intra-household consistency).  
Walker (2005) capably illustrated how the two approaches’ computation time and calibration 
efforts were quite similar, yet the microsimulation model offered the additional benefits of 
preserving demographic distinctions across the population, thus allowing for analysis of sub-
group impacts (of transportation policies and investments, for example).  In addition, the 
microsimulation approach eliminated aggregation errors (spatial and demographic), while 
allowing for calculations of the associated simulation errors/variability (Walker, 2005).  The 
current paper expands this comparison to a microscopic model with tours, rather than trips, as the 
basic unit of analysis, and utilizing more sophisticated methods to incorporate intra-household 
constraints and activity scheduling.  
 
DATA AND SCENARIOS 
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To ensure the greatest consistency between the traditional and microscopic TDMs used here, 
both primarily rely on data collected in the 1996-1997 Austin Travel Survey (ATS 1997) for 
model estimation.  The Capital Area Metropolitan Planning Organization (CAMPO) provided 
interzonal travel time and cost data during peak and off-peak periods of the day, along with year 
2000 zonal employment counts.  The three-county household population (of 1.2 million people) 
was synthesized for both models using the three-county region’s 2000 Census Public-Use 
Microdata Sample (adjusting from the region’s 709 Census block groups to its 1,074 TAZs).  
 
Since both models were calibrated using the same datasets, it is hoped that any differences in 
their predictions are due largely to the models themselves.  The governing hypothesis is that a 
microscopic, activity-based approach should more accurately identify behavioral shifts in travel 
caused by changes in urban form, transportation policy, system investment, and other factors.   
 
To fully examine the responsiveness of the models, three scenarios were analyzed.  These 
include the base scenario (for year 2000, status quo conditions), capacity expansion (of two key 
freeways), and centralized employment.  The expanded capacity scenario adds a lane (in both 
directions) to each of the two most important corridors in the region: Interstate Highway 35 (I-
35, over its entire 85-centerline-mile length) and Loop 1 (also known as MoPac, from Parmer 
Lane to U.S. 290, comprising 16-centerline miles).  Given that both presently are congested 
corridors, such lane additions (providing 36% capacity increases for both corridors) represent a 
reasonable (though unlikely in the near-term) expansion project for the system.   
 
In order to appreciate the impacts of changing job locations, an employment density scenario 
assumes a land use system with jobs more highly concentrated in Austin’s central business 
district and other key locations in the region.  To accomplish this, non-educational, non-airport 
employment levels were modified in all zones.  For the 506 (47% of total) zones classified (by 
CAMPO) as rural, 50% of such jobs were moved to the 201 urban- or 25 CBD-classified zones 
(representing an average 44% loss of jobs in rural zones).  For the 342 zones classified as 
suburban, 30% of employment was moved (representing a 28% loss, on average).  These 
removed jobs were allocated across all urban and CBD-classified zones in proportion to their 
2000 employment totals, raising those zones jobs totals by 58%, on average.  This job-relocation 
example and the capacity-expansion example make for interesting case studies of Austin’s travel 
conditions, while permitting a comparison of model performances. 
 
METHODOLOGY 
In order to further enhance consistency between the two models, they were estimated using 
similar sets of explanatory variables, and employed weights in model estimation (using the 
ATS’s population expansion factors).  Due to the distinctive nature of the two approaches, there 
are obvious differences in the number and types of variables used for the models, as well as the 
model specifications themselves.  In general, however, the variables used for the traditional 
TDM formulation are a subset of those used in the microscopic model.  The basic modeling steps 
are summarized here. 
 
Population Synthesis 
To ensure consistency in inputs, population synthesis was performed similarly for both models.  
The aggregate model uses a subset of the outputs of this analysis. The population synthesizer 
builds zonal populations based on local and regional Census data.  The inputs to this synthesis 
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process, for each zone, are zonal population, household population, labor force population, and 
average annual household income.  Only average values for household size are available at the 
Census tract level, so shifted Poisson were used to generate marginal distributions for household 
size.  Marginal distributions for income are given directly by the Census data.  PUMS data then 
were used to seed a process of iterative proportional fitting (IPF), in order to reconcile zonal 
information with the multi-dimensional nature of these distributions.   For the microscopic 
model, draws of actual values from the closest-matching PUMA household then provided 
demographic information on individual household members, household auto ownership, and a 
continuous value of household income.  The output is a list of specific households in each zone, 
characterized by size and composition (i.e., worker/student status, age, and gender of household 
member), income, and auto ownership.   
 
The microscopic model uses the complete set of individual and household characteristics 
throughout the model system (e.g., household size, worker/student status, age, gender, income, 
and auto sufficiency).  For the aggregate TDM, the data set was aggregated by household type at 
the zonal level, using only the household size, income, and presence-of-children variables from 
the synthesis.  
 
Traditional, Aggregate Model Specification 
The traditional TDM employed here relies on techniques used in several existing TDMs for the 
Austin region, all based on data in the 1996-1997 ATS (CAMPO 2000, Smart Mobility 2003, 
Gupta 2004, Kalmanje and Kockelman 2004, and Kalmanje 2005), as well as many standard 
techniques outlined by Martin and McGuckin (1998).  All components were estimated to 
facilitate comparison with the activity-based model, while maintaining a rather traditional 
(though not highly simplistic) structure.  The model uses rather standard and streamlined 
approaches: regression models for trip generation, fixed rates of trip productions (as a function of 
household and employment counts [by type]), multinomial logit models for destination and mode 
choice, fixed time of day and vehicle occupancy trip apportionments, and static traffic 
assignment routines. For consistency, it also features a vehicle ownership model upstream of trip 
production.  Due to space limitations, many of the details of the models are not included here.  
For a more detailed discussion of the model estimation results, please refer to Lemp (2007). 
 
Auto Availability 
While auto availability does not comprise one of the four steps in the basic four-step modeling 
procedure (as outlined by Martin and McGuckin (1998)), auto availability plays a key role in 
travel behavior (Smart Mobility 2003). For this reason, an auto ownership model was estimated 
and placed upstream of more traditional steps offering consistency with many of the better 
TDMs in practice today.  Due to the implicit ordering of alternatives from 0 to 1 and then 2 or 
more autos, an ordered-probit model was used.  Here, it was assumed that households with more 
than two autos behave in ways similar to those with two; hence, three choice alternatives are 
offered. 
 
Trip Generation 
Using linear regression techniques, home-based trip productions were modeled at the household 
level based on four characteristics: the presence of children under 18 years of age, annual 
household income categories ($0-29,999, $30,000-74,999, and over $74,999), household size, 
and auto availability.  The first three of these characteristics come directly from the synthesized 
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household types, and auto availability comes from the three choice probabilities of the auto 
availability model.  Work and non-work trips were modeled separately. 
 
Non-home based (NHB) trips – both work and non-work types (separately) – were modeled at 
the zonal level (rather than at the household level) using zonal housing and employment 
characteristics.  Again, linear regression techniques were used.  The model parameter estimates 
are relevant only for the sample.  For model application, parameter estimates were inflated to 
represent the total population.  It was assumed that zones with no households and no 
employment will not produce any trips; hence, constants were not used in the two NHB trip-
generation regression equations.  Scatter plots of NHB trips (work and non-work in nature) 
versus each of the explanatory variables support this notion. 
 
Mode Choice 
Multinomial logit models of mode choice were estimated for each of the four trip types.  Because 
of the unreasonably low value of travel time implied by the models (which may come from poor 
traveler perception of actual times and costs across modes)1, and the desire for time-sensitive 
travel patterns (in mode, route, and destination choices), value of travel time was assumed to be 
$9 per hour per person for work trips and $4.50 per hour per person for non-work trips.  A 
generalized cost term was then formulated based on total travel time and cost using CAMPO’s 
peak and off-peak travel cost and time matrices (by mode type).   
 
Indicator variables for whether the individual lives in a household with one or more vehicles per 
household member were devised.  This was done using the categorical values for household size 
(1, 2, 3, 4, and 5+) and number of autos (0, 1, and 2+).  Therefore, there are some households 
that in actuality have one or more vehicles per person, but have a value of 0 assigned for the 
indicator variable (e.g., 3 autos and 3 persons), but these were relatively few.  It was assumed 
that marginally relevant vehicle operating costs (for purposes of mode choice) were $0.10 per 
mile, which approximate gasoline costs. 
 
Destination Choice 
While destination choice precedes mode choice in the standard four-step model, here a nested 
formulation is used, since a logsum (expected minimum cost) formulation across modes and 
times of day was used to estimate (and then apply) the multinomial model of destination choice.  
For time of day purposes, two travel time skims were performed for peak and off-peak periods.  
The logsum from origin i to destination j for trip purpose p is computed as shown in equation (1) 
across all modes m and time periods t.  The β’s in the formula represent coefficients estimated in 
the mode choice model. 
 

( )[ ]⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= ∑

∈Ctm
mpvehmpijmttpijp IndicatorGenCostLOGSUM

,

expln γβα    (1) 

 
where GenCostijmt is the generalized cost (logsum) term from zone i to zone j using mode m 
during time period t, Indicatorveh is an indicator variable taking a value of 1 if the household has 
1 or more vehicles per household member, and γmp is an alternative-specific constant for each 
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mode-trip purpose combination (and zero for the base mode). 
 
For purposes of estimation, not all choice alternatives could be used since the total choice set 
includes over 1,000 possibilities.  Instead, 30 choice alternatives were generated at random, plus 
the chosen alternative, for a total of 31 choice alternatives used in model estimation (as per 
McFadden’s [1978] finding that such sampling results in consistent estimators).  These models 
were estimated using a multinomial logit framework. 
 
Time of Day and Vehicle Occupancy 
For time of day analysis, four time periods were used:  AM peak (6 am – 8:59 am), PM peak (3 
pm – 6:59 pm), midday/evening (9 am – 2:59 pm and 7 pm – 8:59 pm), and overnight (9 pm – 
5:59 am).  Fixed proportions (specific to each of the four trip types) were obtained from the 
(population-weighted) ATS to use in application.  Home-based trips were split by departure trips 
and return trips.   Similarly, vehicle occupancy rates were derived from the travel survey for 
application to shared ride trips.  These rates were also derived specific to trip type. 
 
Traffic Assignment 
Truck trips and external trips were handled outside the TDM.  Origin-destination (O-D) tables 
for both were taken directly from CAMPO estimates and added to the vehicle O-D tables before 
the assignment phases of both the aggregate and microscopic models.  These 460,000 trips were 
handled statically using (fixed) ATS trip distributions across times of day. They represented 
approximately 5 million vehicle miles traveled (VMT), or about 15% of the region’s total VMT.  
(A 15% share of VMT is substantial, but considering that I-35 is one of the nation’s busiest 
corridors for international trade and that Austin is home to the state capitol, various state 
agencies, and the University of Texas, the truck/external trip share appears realistic.)  Taken as 
given, these externally related trips are presumed to be non-responsive to system changes, which 
is an imperfect (though common) assumption. 
 
Deterministic user-equilibrium traffic assignment was performed for both models in an identical 
manner.  Shortest-paths were found using generalized cost functions, and, in the case of the 
aggregate TDM, this information was fed back (to destination and mode choice models) using 
the method of successive averages (MSA), until system convergence (using a TransCAD gap 
criterion of 0.02).  Unfortunately, due to time constraints, full feedback was not possible for the 
activity-based model (whose data development and model run times were on the order of days). 
 
Microscopic Activity-Based Model Specification 
The microsimulation model was structured in a manner similar to MORPC’s activity- and tour-
based framework (PB Consult, 2005), though it does not employ the same nested logit 
framework.  As described earlier, this model synthesizes the Austin population and uses a series 
of logit model results to simulate the daily activity patterns and travel decisions made by each 
individual in the synthesized population. The model consists of a population synthesizer, primary 
activity pattern (PAP) generator, maintenance and discretionary tour allocation model, activity 
scheduler, primary activity and secondary activity destination choice, and mode choice models, 
as well as network assignment, as shown in Figure 1.  Each model was tested for inconsistencies 
with sampled data to ensure targets were met.  With the exception of the destination choice sub-
models (discussed in more detail below), no inconsistencies were found.  A more complete 
description of the model system can be found in McWethy (2006) and Lemp (2007). 
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Mandatory Activities 
The PAP model system determines the number and type of mandatory activities that each 
individual will undertake that day, including work, university, and school.  It is comprised of 
MNL models specific to six person types:  pre-driving school-age children (ages 5 through 15 
[since persons under 5 years of age were not sampled]), driving-age children (ages 16 and 17), 
non-working adults, adult students, part-time working adults, and full-time working adults.  This 
system incorporates household interactions via a sequential modeling format, which models the 
person types in order of their (assumed) dependence on other household members, thus 
accounting for other members’ PAPs.  This ordering is adapted from the MORPC model (PB 
Consult, 2005) and is as follows:  pre-driving age children and driving age children are assigned 
PAPs first, then adult students, full-time working adults, part-time working adults, and finally, 
non-working adults.  The explanatory variables used in this model include household size and 
composition, traveler demographics, auto “sufficiency” (i.e., having at least one automobile per 
adult), a variety of area type characteristics of the home zone (including employment numbers by 
type, area type indicators [rural, suburban, urban, and CBD], and transit availability), and 
indicator variables for PAPs chosen by household members already modeled. 
 
Non-Mandatory Activities 
The non-mandatory activity model is comprised of three MNL sub-models, which run at the 
household level, and two individual-level sub-models. The household-level models determine the 
number of escort activities (parents chauffeuring children, typically), shopping activities and 
other maintenance activities (0 through 3+ for each tour type). The individual-level models 
allocate household maintenance activities (to household members) and determine the number of 
discretionary activities undertaken by each household member. The explanatory variables used 
for these models include the individual’s person type and PAP, household size and composition, 
auto sufficiency, household income, land use, and transit accessibility.  
 
Activity and Trip Scheduling 
The activity scheduler draws from the actual ATS activity diaries, in order to fit the individual’s 
PAP, the number of escorting, shopping, other maintenance, and discretionary activities for the 
individual, and the area type of the home zone.  This diary is comprised of all activities 
undertaken, including work, school, all types of maintenance activities and discretionary 
activities, as well as the activity’s start time and duration.  The start time for each activity is key 
here, and activity durations are then adjusted to allow for different travel times. 
 
Primary Destination Choice  
There are two destination choice models in the microscopic model.  The first determines the 
location of the primary activity (typically a mandatory activity) of each tour.  It is a MNL model 
with attraction measures (including residential, commercial and employment intensities, zone 
area, mode choice logsums, and population density) for each destination zone serving as the 
explanatory variables.  There are separate models for mandatory and non-mandatory activities. 
 
Mode Choice 
Once a destination is chosen for the primary stop of the tour (i.e., randomly sampled from among 
all options, according to the associated logit probabilities), tour mode is chosen, ensuring 
consistency of mode use across all tour segments.  Mode choice relies on an MNL model with 
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both time and cost parameters, as well as travel-purpose and mode-specific constants, number of 
other activities by type undertaken on the tour, person-type constants indicating age and 
employment status, household income, auto sufficiency and household composition. (For 
example, the presence of children increases the likelihood of carpooling/shared ride.)  The four 
mode alternatives are drive-alone, shared ride, transit, and non-motorized modes. Logsums 
across these mode alternatives are used in the destination choice model. 
 
Secondary Destination Choice 
Once the mode for each tour is determined, the secondary activity destination choice model is 
applied.  This model is similar to the primary activity destination choice model, but it controls 
for the location of the primary activity (via distances to both home zone and primary activity 
zone) and the chosen mode.  This is done by controlling for the generalized costs, specific to the 
chosen mode, from the home zone and from the primary activity destination.  
 
Similar to the conventional model’s applications, these microsimulated tours were loaded onto 
the Austin network, using standard assignment methods, at the TAZ level, in TransCAD.  Trips 
with at least one external end zone and commercial vehicle trip matrices were loaded as well.  
Unlike in the conventional model, feedback of travel times and costs to models of primary 
activity destination choice, mode choice, and secondary activity patterns was not performed in 
the microscopic model’s application.  The effort required to perform these hierarchical tasks in 
this microscopic paradigm is significant (requiring at least one person-day).  If the 1.2-million 
person population could be efficiently tracked and all the behavioral models easily coded into 
GIS-DK, for use in the network assignment package (TransCAD), this iterative feedback-till-
convergence would be feasible. 
 
RESULTS 
The performance of the two models was compared on the basis of predictive accuracy (both in 
model development and application), modeling sensitivities to policies and investments that 
affect the timing and cost of travel, using the direct observations of traffic flows during peak 
hours and off-peak hours and mode splits forecasted by each model.  
 
VMT and Mode Share Comparisons 
In order to examine the accuracy of the two models, actual link flow data were compared to 
those predicted by the models using the base scenario (Table 1).  The actual data come from 
1997 traffic counts performed by CAMPO on 6,606 of the network’s 7,203 coded, non-centroid-
connecting links. (2,436 [or 25%] of the coded-network’s links are centroid connectors.)  Of 
course, the models were applied using 2000 Census data, rather than 1997 travel data, so one 
expects somewhat higher model-predicted counts (due to population, job and income growth 
during the 1997-2000 period – which was a time of significant economic expansion for the U.S. 
and Austin economies).  Moreover, the TDMs assume a school day, whereas CAMPO’s counts 
are for an average day (including weekends and summertime), over the course of a year.  
Estimates of network VMT (on the links with traffic counts) are approximately 14% greater (3.8 
million VMT per day) with the aggregate model and 27% greater (7.1 million VMT per day) 
with the microscopic model.   
 
After recognizing the growth in population, employment and travel during the 1997-2000 period, 
and the emphasis of school days in the TDM, the traditional model appears to be performing 
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reasonably, in general, system-level performance terms.  However, the microscopic model is not.  
Upon closer inspection, the microscopic model results were found to suffer from long travel 
distance predictions, with most of this error (65% of the excess VMT, as compared to the 
aggregate model predictions) occurring in return trips to home.  Essentially, after all activity 
locations for a tour are chosen, the synthetic travelers tend to locate their final tour stop (prior to 
returning home) too far from their home zone.  One possible source of this error stems from the 
estimation of the destination choice model with 30 randomly chosen alternatives rather than the 
entire set of 1,074.  While this method of model estimation is extremely common and 
statistically consistent (see McFadden 1978), the fact that many legitimate choice alternatives are 
not considered could reduce the magnitude of level-of service parameter estimates (biasing the 
impedance term’s coeffiicient towards zero, essentially).  Preliminary investigations indicate that 
the model parameters for level-of-service variables do, in fact, rise when more alternatives are 
used in model estimation.   
Model-predicted mode shares also were compared to the (population-corrected) ATS shares 
(Table 2).  In the aggregate model, transit and walk/bike mode shares are significantly less than 
that of the population weighted ATS (0.9% and 2.6%, rather than ATS shares of 2.0% and 
4.3%).  For walk/bike trips, this may be a result of the low (4 mph) speed assumption, made 
during model estimation, which may not apply for Austin.  In contrast, the microscopic model 
estimates of transit share (1.9%) are very close to the ATS.  The microscopic model estimates of 
walk/bike trips are almost identical to those of the aggregate model.  Of course, these are minor 
modes, so mis-predictions will not really affect most/many applications of the model. 
Fortunately, the mode shares for both shared ride and drive alone appear reasonable, under both 
model formulations.   
 
Scenario Evaluations via Model Responses 
To investigate model sensitivities to scenario assumptions, three measures were used for 
comparison, to the base scenario’s outputs: VMT by roadway type, VMT and vehicle-hours 
traveled (VHT) by time of day, and mode split.  Changes in these variables (from the base case 
outputs for both models) were used to assess scenario results, across the two modeling 
frameworks. 
 
Results of the Expanded-Capacity Scenario 
Table 3 provides VMT and VHT estimates by time of day for both models under expanded link 
capacities for I-35 and Loop 1.  As expected, for the traditional model, total VHT estimates fell 
for the (AM and PM) peak time periods.  With reduced travel times, VMT is predicted to 
increase anywhere between 0.55% (off-peak) and 9.13% (in the AM peak period).  Of course, 
the critical question is how these compare to the microscopic model’s estimates model.  The 
activity-based model shows similar results for both the off-peak and PM peak periods, but the 
effects in the AM peak period are smaller while the effects in the midday period are greater.  
Both models predict a slight increase VMT over all time periods:  2.62% and 3.17% for 
aggregate and activity-based, respectively.  In addition, both models predict almost an identical 
overall increase in speeds of about 5%. 
 
It is expected that with increased capacity, people will shift to routes that offer higher speeds 
under free-flow and regular traffic conditions (in this case, I-35 or Loop 1).  The traditional 
model results (Table 4) suggest just that:  people shift their destination and route selections in 
favor of these higher speed freeways.  Other roadways still receive significant use, but people 
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tend to drive further distances, relying more on the additional capacity offered by I-35 and Loop 
1.  The microsimulation model forecasts indicate similar patterns, but with slightly larger 
magnitudes.  Both models suggest a higher shift towards Loop1 as compared to I-35, as shown in 
Table 4.  The shift is also more evident from frontage roads to the freeways in the microscopic 
model than for the traditional model.   
 
The mode splits for the aggregate model are very close to those of the base scenario, suggesting 
that both models are largely insensitive to network speeds.  This is due to the substantial 
alternative-specific constants in both model’s mode choice settings, which generally are two or 
three times as high as the cost and time component contributions to systematic utility. 
 
Results of the Centralized Employment Scenarios 
Table 3 provides the VMT and VHT results by time of day for both models under the centralized 
employment location scenario.  The results of the traditional model show little impact for this 
scenario, with a slight decrease in VMT and VHT over all time periods, except the AM peak, 
which exhibits a VHT increase of 3.24%.  This can be explained as more commuters are 
concentrated on the routes heading into the CBD.  The microscopic model also predicts an 
overall decrease in VHT and VMT across all time periods with the exception of the off-peak 
period.  The magnitude of the overall daily VMT decrease is substantially larger in the 
microscopic model (2.54%, compared to 0.60% in the traditional model).  The reason for this 
may be explained by the linking of trips in the microscopic model.  While the distance between 
home and primary activity location choices in the microsimulation model may be longer, the 
secondary activities are concentrated near the primary activity.  This ultimately reduces VMT.    
 
With more centralized employment, one may expect longer-distance trips (of all types) and 
greater use of arterials, since Austin’s downtown is not served by many of the region’s freeways.  
However, in both models VMT reductions are predicted on almost every roadway type, as shown 
in Table 4.  This can be explained by higher frequencies of trips originating from (and destined 
for) urban and CBD zones.  Trip distances may be longer for home-based trips, but much shorter 
for non-home-based trip types.  
 
As in the expanded capacity scenario, the mode splits for the aggregate model are very close to 
those of the base scenario, again indicating an insensitivity and heavy weight of alternative-
specific constant terms.  While the microsimulation model predicts little change in transit use, 
the share of walk/bike mode increases by 19%.  This is likely a result of households in the urban 
and CBD zones choosing destinations very close to home.  In any case, it seems the microscopic 
model is more sensitive to the impacts of policy changes on travel, as expected – thanks to the 
explicit chaining of linked trips, mode consistency requirements within a tour, and so forth (see, 
e.g., Bowman and Ben-Akiva, 1997).   
 
CONCLUSIONS 
The question of how much “better” activity-based microsimulation models perform relative to 
traditional aggregate approaches is controversial – and to date largely overlooked.  The 
widespread endorsement by the academic community of activity-based, microscopic models has 
had little empirical foundation.  This paper addresses this issue by calibrating and then applying 
two such models, using identical data sets with application to the same study area for the base 
case, expanded-capacity, and centralized employment scenarios.  
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The calibration of the microscopic model is necessarily more time-consuming for multiple 
reasons.   Traditional travel surveys are coded as trip data, as opposed to tour data, and so the 
data needs to be converted before the models can be calibrated.  While seemingly trivial, linking 
trips into tours requires careful treatment.  Moreover, in order to represent intra-household 
interdependencies, assembly of the variables used in the microsimulation model requires 
additional time.  In total, data assembly for the microsimulation model was roughly four to five 
times greater that that required by the traditional model set-up.  The microsimulation model is 
also more complex, requiring estimation and application of 17 different sub-models (rather than 
the 13 used under the conventional modeling approach) and estimation of 307 individual 
parameters (rather than the 177 required by the traditional model used here).   Complexity of 
such models is a key cost that may be over-ridden by the detailed results that can be acquired and 
policy issues that can be analyzed through these models. However, the analysts must first be 
confident that their simulation methods and activity-pattern, trip timing and other specifications 
are error-free and appropriately reflect actual travel patterns.  If the experience of this research 
team is any indication, the added effort (and skill requirements) of activity-based models may 
not be feasible for most MPOs, particularly in the near term.  This particular microscopic model 
has been under development for over a year and still exhibits many “bugs”.  Its predictions and 
specifications suggest many areas for model improvement and validation.   
 
The results indicate that activity-based models do indeed perform rather differently than 
traditional aggregate approaches. The microscopic model proved more sensitive to capacity 
expansion and employment location tests.  Unfortunately, appraising the accuracy of the models 
under changes to model inputs (relative to actual traffic patterns) is not possible (without actually 
undertaking such a policy and collecting new traffic and travel data).  Moreover, the microscopic 
model was far trickier to estimate in such a way that reasonable behaviors emerged.  
Nonetheless, it seems that the more exhaustive behavioral theory incorporated in the 
microscopic, activity-based models may offer significant benefits for scenario analysis, an 
important component of the planning process.  Far more investigation is needed, to ascertain the 
true benefits of such modeling methods, and the extent to which they warrant the expertise and 
effort that they require. 
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Table 1:  Comparisons of Model-Predicted VMTs and Actual Counts 
Traditional Model Microscopic Model 

Functional Class Count-based 
VMT (1996) VMT (2000) % Increase 

from Count VMT (2000) % Increase 
from Count 

I-35 6,903,589 8,161,105 18.22 9,522,073 37.93 
Loop 1 1,633,263 1,820,105 11.44 2,086,808 27.77 

Other Freeway 2,109,803 2,023,125 -4.11 2,169,954 2.85 
Arterial 13,721,103 16,266,494 18.55 17,591,369 28.21 

Collector / Local 173,489 166,167 -4.22 162,658 -6.24 
Ramps 315,711 302,569 -4.16 317,938 0.71 

Frontage Roads 1,455,020 1,364,576 -6.22 1,595,624 9.66 
TOTAL 26,311,978 30,104,141 14.41 33,446,423 27.11 
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Table 2:  Comparisons of Model Mode Splits to ATS Data 
Base Expanded Capacity Centralized 

Employment 
Model Mode ATS (pop. 

weighted) 
Share % Change 

from ATS Share % Change 
from Base Share % Change 

from Base
Drive 
Alone 0.539 0.598 10.93 0.596 -0.33 0.598 -0.01 

Shared 
Ride 0.398 0.367 -7.82 0.367 -0.07 0.367 -0.07 

Transit 0.020 0.009 -54.34 0.012 32.11 0.009 0.86 

Traditional 
TDM 

Walk / 
Bike 0.043 0.026 -39.30 0.025 -2.65 0.026 1.05 

Drive 
Alone 0.539 0.544 1.00 0.543 -0.20 0.526 -3.41 

Shared 
Ride 0.398 0.411 3.37 0.413 0.48 0.425 3.41 

Transit 0.020 0.019 -7.50 0.018 -1.72 0.018 -2.29 

Microscopic 
TDM 

Walk / 
Bike 0.043 0.026 -40.28 0.025 -2.06 0.031 19.26 

 Note: ATS stands for Austin Travel Survey.  Mode splits were computed based on personal travel only. 
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Table 3:  Time of Day Traffic Comparisons for Traditional Model and Microscopic Model 
Traditional Model Microscopic Model 

Base Case Expanded Capacity Centralized 
Employment Base Case Expanded Capacity Centralized 

Employment Time 
of Day Measure 

Value Value 

% 
Increase 

from 
Base 

Value 

% 
Increase 

from 
Base 

Value Value 

% 
Increase 

from 
Base 

Value 

% 
Increase 

from 
Base 

VMT 6,675,489 6,865,325 2.84 6,658,345 -0.26 5,957,981 6,267,892 5.20 5,653,217 -5.12 
VHT 230,412 217,130 -5.76 228,148 -0.98 180,095 182,917 1.57 170,088 -5.56 

AM 
Peak 

Avg. Speed 28.97 31.62 9.13 29.18 0.73 33.08 34.27 3.58 33.24 0.47 
VMT 11,576,376 11,857,974 2.43 11,469,935 -0.92 14,686,892 15,047,325 2.45 14,264,262 -2.88 
VHT 263,204 263,566 0.14 260,216 -1.13 362,322 351,379 -3.02 349,850 -3.44 Midday 

Avg. Speed 43.98 44.99 2.29 44.08 0.22 40.54 42.82 5.64 40.77 0.58 
VMT 2,322,750 2,363,700 1.76 2,318,697 -0.17 2,529,603 2,550,763 0.84 2,647,652 4.67 
VHT 51,025 51,639 1.20 50,920 -0.21 54,003 54,289 0.53 56,204 4.08 Off-

Peak 
Avg. Speed 45.52 45.77 0.55 45.54 0.03 46.84 46.99 0.31 47.11 0.57 

VMT 9,529,527 9,805,398 2.89 9,476,500 -0.56 10,271,946 10,642,098 3.60 10,030,750 -2.35 
VHT 255,812 249,793 -2.35 253,796 -0.79 297,373 289,804 -2.55 288,484 -2.99 PM 

Peak 
Avg. Speed 37.25 39.25 5.37 37.34 0.23 34.54 36.72 6.31 34.77 0.66 

VMT 30,104,141 30,892,397 2.62 29,923,477 -0.60 33,446,423 34,508,078 3.17 32,595,882 -2.54 
VHT 800,452 782,128 -2.29 793,081 -0.92 893,793 878,389 -1.72 864,626 -3.26 Daily 

Avg. Speed 37.61 39.50 5.02 37.73 0.32 37.42 39.29 4.98 37.70 0.74 
 



 19

Table 4:  VMT by Roadway Type for Traditional and Microscopic Model Applications with Expanded Capacity and 
Centralized Employment Scenarios 

  Expanded Capacity Scenario Results Centralized Employment Scenario Results 
Traditional TDM Microscopic TDM Traditional TDM Microscopic TDM 

Functional Class 
VMT 

% Increase 
from Trad. 

Base 
VMT 

% Increase 
from Micro. 

Base 
VMT 

% Increase 
from Trad. 

Base 
VMT 

% Increase 
from Micro. 

Base 

I-35 9,043,058 10.81 10,845,345 13.90 8,144,657 -0.20 9,416,018 -1.11 
Loop 1 2,130,064 17.03 2,470,387 18.38 1,814,136 -0.33 2,084,277 -0.12 

Other Freeway 1,992,374 -1.52 2,141,734 -1.30 2,010,251 -0.64 2,115,511 -2.51 
Arterial 15,995,370 -1.67 17,149,740 -2.51 16,126,088 -0.86 16,929,385 -3.76 

Collector / Local 164,536 -0.98 156,201 -3.97 163,601 -1.54 152,257 -6.39 
Ramps 316,424 4.58 338,611 6.50 301,102 -0.48 321,588 1.15 

Frontage Roads 1,250,570 -8.35 1,406,060 -11.88 1,363,642 -0.07 1,576,846 -1.18 
TOTAL 30,892,397 2.62 34,508,078 3.17 29,923,477 -0.60 32,595,882 -2.54 
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Figure 1:  Microscopic (Activity-/Tour-Based) Model Structure 
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