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ABSTRACT 1 
This research estimated models for long-distance domestic passenger trips before and after the introduction 2 
of autonomous vehicles (AVs) and their application to a 10% synthetic US population. The authors 3 
synthesized 12.1M households and 28.1M individuals across 73,056 US census tracts. To generate 4 
disaggregated passenger trips, travel demand models, including trip frequency, season, purpose, party size, 5 
mode choice; destination choice models; and vehicle ownership models were estimated. Different datasets, 6 
including a 2021 long-distance AV survey, 2016/17 National Household Travel Survey (NHTS) survey, 7 
EPA Smart Location data, FHWA rJourney dataset, and a 2017 AV fleet survey, were used for model 8 
estimation. The model applications indicated 0.85 vehicles per capita for 2019, which is consistent with the 9 
vehicle per capita of 0.83 in 2020 based on US census data. AV ownership is likely to be 0.33 per capita 10 
after the introduction of AVs within the marketplace with a $3500 AV technology cost premium in the year 11 
2040. Assuming a $3500 technology cost premium (e.g., in 2040), total person-miles traveled per capita in 12 
long-distance trips is estimated to rise 35% (from 280 to 379 miles per month). The results of this study 13 
provide insights into how future long-distance travel patterns will change after AVs are in the market on a 14 
large scale. 15 

 16 

Keywords: Long-distance Travel, Self-driving Vehicles, Travel Demand Modeling, Mode Shift, 17 
Destination Choice  18 
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MOTIVATION 1 
Long-distance (LD) trips constitute an important part of Americans’ intercity travels, with over 7 billion 2 
long-distance person-trips (weighted) over 75 miles in 2017 (FHWA 2017). Although these trips are a small 3 
portion of all trip counts by Americans (i.e., short- and long-distance), which was reported to be 371 billion 4 
person-trips in 2017, they represent almost 50% of the person-miles traveled (PMT) in the US (McGuckin 5 
2018). Thus, LD trips play an important role in traffic congestion and economic growth and it is critical to 6 
understand their patterns to control congestion (LaMondia et al. 2016a). Most LD trips are on the ground, 7 
especially trips shorter than 750 miles. Autonomous vehicles (AV) and shared autonomous vehicles (SAVs) 8 
can raise this share, as these vehicles make driving easier and provide the option of traveling by car for 9 
some non-drivers. Most LD efforts have been dedicated to intraregional models (Childress et al. 2015, 10 
Harper et al. 2016) and no interregional study has considered the impacts of AVs on users’ destination and 11 
mode choice, which is the focus of this study.  12 

Most travel demand forecasting models are developed based on models developed for urban 13 
intraregional trips, which are different from LD intercity travels in that intraregional trips are differentiated 14 
based on homebased vs non-homebased trips, while LD trips are more likely categorized based on trip 15 
purpose, such as personal or recreational versus business trips (Schiffer 2012). LD travel patterns contain 16 
many other factors, including travel time and cost (Childress et al. 2015), travel party size (Li et al. 2020), 17 
and trip duration and schedule (Li et al. 2020, LaMondia et al. 2016b). Household and person-level 18 
demographics, such as household income (Sandow and Westin 2010), traveler’s age (Collia et al. 2003), 19 
education (Holz-Rau et al. 2014), and number of children (LaMondia 2016b), are other important factors 20 
reported in previous studies. 21 

The advent of AVs in the market is likely to boost LD passenger travels across the US in the coming 22 
years. As mentioned earlier, most studies related to AVs focus on intracity trips. Using an LD survey in 23 
Michigan, LaMondia et al. (2016b) investigated the impacts of AVs on LD trip generation and mode choice 24 
by assuming lower VOTT for AV users relative to conventional non-autonomous vehicles and higher travel 25 
costs for AVs. They predicted the air mode to be the dominating mode for trips longer than 500 miles with 26 
a 43.6% share (70.9% of trips greater than 1000 miles). AVs were also anticipated to reduce the share of 27 
personal conventional vehicles and airplanes for LD trips shorter than 500 miles. Huang et al. (2019) studied 28 
passenger and freight mode splits before and after the introduction of AVs across the Texas Triangle 29 
megaregion. They estimated airline passenger travel to fall 82% in that region, as travelers switch to using 30 
AVs and SAVs instead. They also estimated that people will choose more distant locations, increasing the 31 
average Texas person-trip distance from 14 to 16 miles (using Year 2040 land use forecasts). Childress et 32 
al. (2015) investigated the impacts of AVs on travel patterns using an activity-based model for the Seattle, 33 
WA region. They made different assumptions about AVs’ value of travel time (VOTT) and cost changes 34 
relative to conventional passenger vehicles to modify the travel demand model, which was developed for 35 
currently available modes. They predicted a rise in VMT considering roadway capacity improvements due 36 
to AVs. All aforementioned studies either focused on LD non-AV trips or intraregional AV trips. Harper et 37 
al. (2016) estimated a 14% increase in annual light-duty vehicle-miles travelled (VMT) for the US 38 
population of 19 years old and older when AVs are an option in the future. They only considered increases 39 
in VMT due to the driving option for non-drivers, the elderly, and people with medical conditions that 40 
restrict their driving, and did not estimate travel demand models to investigate the impact of AVs on users’ 41 
mode and destination choices. Gurumurthy and Kockelman’s (2020) stated preference survey results among 42 
2588 Americans suggested that over 50% of the US passenger trips between 50 and 500 miles (one way) 43 
will be made in an AV or SAV in the future (when AV technology is ubiquitous, but human driving is still 44 
permitted). They also estimated a tripling in SAV mode share for such trips if the respondent’s annual 45 
household income is between $75,000 and $120,000 (versus higher or lower income levels), and a 67% 46 
increase when it is a business trip (versus personal trip). Their study mostly focused on the willingness of 47 
respondents to ride-share after AVs are introduced to the market. Perrine et al. (2020) added AVs as a new 48 
mode to the FHWA rJourney mode and destination choice models. In a scenario with AV operating costs 49 
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equal to 118% of those of traditional cars, they predicted a shift in destination choice by AVs towards 1 
longer-distance trips with personal cars (including AVs). They also estimated that the AV mode share 2 
would lead to a 53% loss in airline revenue. While adding AVs as a mode to estimate travelers’ mode and 3 
destination choice in the presence of these vehicles is a useful strategy, the FHWA rJourney data used in 4 
their study for mode and destination choices was gathered in 2010, which is rather outdated for this purpose.  5 

Recognizing the potential for such dramatic shifts in travel choices, this study forecasts the impacts of 6 
AVs on the destination and mode choices of long-distance passenger trips (over 75 miles one-way) within 7 
the US. The travel demand model of this study is composed of several sub-models for vehicle ownership, 8 
trip season, trip frequency, trip purpose, travel party size, mode choice, and destination choice. Each model 9 
is addressed separately herein. Different datasets were used to estimate these models, including an LD-AV 10 
survey (Huang et al. 2022), the 2016/17 National Household Travel Survey (NHTS) dataset, FHWA 11 
rJourney travel skim data, and EPA Smart Location dataset. The models were applied to a synthetic 12 
population consisting of 12.1M households and 28.1M individuals across 73,056 census tracts throughout 13 
the nation to estimate the shifts in travel caused by AVs in the market. 14 

The remainder of this paper is organized as follows. The next section elaborates on the datasets used in 15 
this study. The third section explains the framework and methods used to estimate different travel demand 16 
models and the application of these models to the synthetic population to generate disaggregate LD trips. 17 
Then, the effective parameters in different models will be explained, and the projected impacts of AVs on 18 
Americans’ LD domestic travel will be summarized, followed by conclusions and limitations of this study. 19 
DATA DESCRIPTION 20 
This study leveraged data from different sources to estimate travel demand models before and after AVs 21 
are introduced into the market. The main data source capturing the presence of AVs is an LD-AV survey 22 
conducted in 2021 to anticipate Americans’ long-distance travel preferences when access to AVs is 23 
common. The survey contains responses from 1,004 U.S. respondents (45% residing in Texas and 55% in 24 
other US states) to revealed and stated preference questions about recent trips and future trip scenarios 25 
(Huang et al. 2022). Sample weights were generated using an iterative proportional fitting (IPF) method 26 
(Roth et al., 2017) to match the most recent five years of data from the American Community Survey 27 
(ACS).  28 

The 2016/17 NHTS data, containing 924,000 trip observations (~15,000 long-distance over 75 miles) 29 
made by almost 130,000 households and 264,000 persons, was used to estimate trip frequencies, trip season, 30 
trip purposes, destination choice, and travel party size models. Trips longer than 75 miles (15,100 trips) 31 
were filtered from this dataset to estimate trip season, trip purpose, and destination choice models. This 32 
dataset contains trip, person, and household tables. The vehicle ownership model leverages the household 33 
table and trip models are estimated using the trip table. The person table was matched with the trip table to 34 
include individuals’ demographics in different models. Sample weights reported in the NHTS data were 35 
used to match the sample with the entire US population. NHTS uses ACS data to create expansion factors 36 
to scale up survey data to 301 million persons (or 118 million households), making 371 billion person-trips 37 
(7 billion long-distance person-trips) every year (FHWA 2017).  38 

Ground and air travel time and cost skims are required to estimate users’ mode and destination choices. 39 
For this purpose, the FHWA’s rJourney dataset was used, which contains a synthetic set of 1.17B long-40 
distance tours by US households, estimated for the year 2010. Travel time and cost estimates in this dataset 41 
are across 4,477 National User Model Areas (NUMAs) in the US. NUMAs were generated by FHWA using 42 
counties and Census Bureau Public Use Microdata Areas (PUMAs) across the US. FHWA overlays PUMAs 43 
and counties and selects the smaller zones as NUMAs. In the United States, there are a total of 3,243 44 
counties and 2,351 PUMAs. The EPA’s Smart Location dataset was used for land use details at all 73,056 45 
tract zones, including population density and counts and job counts at each tract zone.  46 
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To simulate US travel patterns, the research team synthesized 10% of the US population at the census 1 
tract level (73,056 census tracts across the US). The synthesized population is based on marginals from 5-2 
year ACS data in 2019 (for the period between 2015 and 2019), using PopGen 2.0 software developed by 3 
Pendyala et al. (2011) and Ye et al. (2009). The household and person data were synthesized across 2,351 4 
PUMAs, to mimic the population distribution of the US (including 50 states and the District of Columbia), 5 
consistent with census datasets and geographic-correspondence files. Note that PUMAs are statistical 6 
geographic areas defined by the US Census Bureau. These areas are designed to partition each state or 7 
equivalent entity into non-overlapping zones, each containing no fewer than 100,000 people. They are 8 
primarily utilized for the tabulation and dissemination of decennial census and American Community 9 
Survey (ACS) Public Use Microdata Sample (PUMS) data. The authors used the datasets described in this 10 
section for estimating travel demand models and model applications. Table 1 summarizes the statistics of 11 
the synthesized population (used for model applications) and the 2016/17 NHTS data (used for travel 12 
demand model estimations before AVs). 13 

Table 1. Summary Statistics of Synthesized Population (10% Sample of 2019 US Population with 14 
28.1M Persons and 12.1M Households) and 2016/17 NHTS Data (264,000 Persons and 130,000 15 

Households) 16 

Variable Category 2019 Synthetic 
Population 2016/17 NHTS 

PERSON  

Sex Male 47.43% 49.07% 
Female 52.56% 50.93% 

Race 

White 73.54% 72.49% 
Black or African American 12.23% 12.71% 
Asian 5.38% 5.33% 
American Indian or Alaska Native 0.76% 0.86% 
Native Hawaiian/Pacific Islander 0.16% 0.28% 
Multiple responses selected 3.19% 3.96% 
Some other race 4.73% 4.37% 

Education 

High school graduate or GED 52.71% 33.51% 
Some college or associate degree 23.91% 28.56% 
Bachelor’s degree 14.72% 21.02% 
Graduate or professional degree 8.66% 16.90% 

Age 

Younger than 10 years old 11.99% 8.37% 
11–17 years old 10.10% 9.69% 
18–24 years old 8.49% 10.37% 
25–34 years old 13.79% 14.07% 
35–44 years old 12.80% 14.03% 
45–54 years old 13.34% 13.43% 
55–64 years old 13.29% 14.45% 
65–74 years old 9.44% 10.05% 
75 years or older 6.75% 5.12% 

HOUSEHOLD  

Household 
Size 

1-person HH 27.86% 27.88% 
2 persons in HH 33.93% 33.88% 
3 persons in HH 15.59% 15.67% 
4 persons in HH 12.90% 14.33% 
5 persons in HH 5.97% 5.42% 
6 persons in HH 2.30% 1.93% 
7 or more persons in HH 1.44% 0.89% 
Less than $10,000 5.87% 7.51% 
$10,000–$14,999 4.33% 6.02% 
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Variable Category 2019 Synthetic 
Population 2016/17 NHTS 

Annual 
Household 
Income 

$15,000–$24,999 8.95% 9.78% 
$25,000–$34,999 8.97% 10.01% 
$35,000–$49,999 12.30% 12.37% 
$50,000–$74,999 17.26% 16.54% 
$75,000–$99,999 12.77% 12.30% 
$100,000–$124,999 9.17% 9.38% 
$125,000–$149,999 6.07% 5.35% 
$150,000–$199,999 6.84% 5.22% 
$200,000 or more 7.49% 5.50% 

# Children 

0 children 70.60% 69.92% 
1 child 9.69% 12.13% 
2 children 11.96% 12.29% 
3 children 5.18% 3.94% 
4 children 1.84% 1.22% 
5 or more children 0.72% 4.93% 

 1 
MODELING FRAMEWORK AND METHODS 2 
To investigate the impacts of AVs on travelers’ long-distance trips, this study generates disaggregate trips 3 
for the 10% synthetic population before and after AVs are available in the market. Figure 1 illustrates the 4 
datasets and steps to generate trips using a synthetic population. This figure shows the sequence of models 5 
required for generating trips and distributing them among different destinations and modes. Pre-trip models 6 
include the decision to participate in long-distance travel and departure time season, purpose, and frequency 7 
over the course of a year. Then, destination and mode choice models should be estimated, with mode choice 8 
conditioned on household vehicle ownership decisions and destination choice conditioned on the 9 
accessibility term (i.e., mode choice logsum). Party size for each tour should also be estimated before mode 10 
choice estimations. 11 

The number of long-distance trips per day was estimated at the individual level using a zero-inflated 12 
negative binomial (ZINB) model and the 2016/17 NHTS data. Based on the 2020 AV survey results and 13 
prior studies (Huang et al., 2020), it is assumed that trip frequency will increase by 15% after AVs are in 14 
the market. Population weights are applied to all models to ensure that parameter estimates better reflect 15 
the US household- and person-level populations. A multinomial logit model was used to estimate trip 16 
purpose and season models. Purposes include regular home-to-work “commute” trips (9%), as well as 17 
work-related business trips (7%), shopping excursions (18%), personal business (11%), 18 
religious/community trips (1%), school/daycare trips (1%), medical/dental trips (4%), trips made to visit 19 
friends and family (19%), social leisure trips (28%), and other purposes (1%). The party size model also 20 
uses a negative binomial specification with the 2016/17 NHTS data set to predict the number of individuals 21 
in a trip “party,” including non-household members.  22 

Mode choice relies on a joint revealed and stated preference multinomial logit model and the 2021 LD-23 
AV survey data, for all available modes (which vary by household, due to vehicle ownership decisions, and 24 
individual preferences). Survey respondents were asked to recall a recent long-distance trip and whether 25 
they would be willing to replace the mode used for that trip with AVs, provided the AVs are available with 26 
the same travel time as human-driven vehicles. The mode choices before and after the introduction of AVs 27 
were used in a joint revealed and stated preference mode choice model. A Poisson model was employed to 28 
estimate auto ownership before the advent of AVs. Quarles et al.’s (2021) AV ownership simulation 29 
approach was used to predict AV ownership in the future. Their approach estimates households’ 30 
willingness-to-pay (WTP) for AVs, where all capabilities found in today’s human-driven vehicles are 31 
maintained in all fully autonomous vehicles, and compares WTP to the technology price in each target year. 32 
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 1 

 2 
Figure 1. Steps for Applying Travel Demand Models to the Synthetic Population to Generate 3 

Disaggregate Trips Before and After AVs 4 

Multinomial logit models were also used to predict destination choice of domestic trips considering 5 
NUMAs as different destination zones, which are finer than US counties in the nation’s heavily populated 6 
big-county regions (like southern California). The destination choice model calibration process tested 7 
controls for attraction details (i.e., the logarithm of different job-type counts summed over each destination 8 
tract, logsum over mode choice utilities, and population density), in two distinct model equations for 9 
business and personal trips. Land use data were extracted from the EPA Smart Location data by mapping 10 
NUMA zones to US tracts’ Federal Information Processing System (FIPS) codes. The FHWA rJourney 11 
travel time and cost skims were used for the mode choice logsum estimates, which are the accessibility 12 
terms. Given the very large destination-choice set, Lemp and Kockelman’s (2012) strategic sampling 13 
approach was used for tractability and reasonable computing time. Strategic sampling for large-set 14 
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estimation relies on a simple upstream choice logit model with 299 destination alternatives chosen 1 
randomly (out of 4477 NUMA zones), alongside the actual chosen zone. A special probability-adjusted 2 
logit model is used to draw the 300 alternatives in proportion to initial choice-probability estimates. The 3 
sensitivity of this strategic sampling approach to the number of sample alternatives is investigated by Lemp 4 
and Kockelman (2012). The travel demand models were run in sequence for the synthesized household and 5 
person data and the models were validated by comparing the estimated long-distance trip frequency, 6 
purpose, season, party size, modes, and destinations before AVs with those of the NHTS dataset. Then, 7 
these specifications were estimated for future scenarios when AVs are readily available. 8 
RESULTS AND DISCUSSIONS 9 
This section summarizes travel demand models and the model application results before and after AVs are 10 
readily available. Table 2 illustrates the practically and statistically significant variables in the long-distance 11 
trip frequency model, along with the impacts for a one standard deviation increase in each covariate (as a 12 
measure of practical significance). Results of the ZINB model for long-distance trip frequencies suggest 13 
that shifting the population-weighted sample toward the male gender by 1 SD increased the sample’s 14 
average long-distance trip frequency by 21.6%. A 1 SD increase in households’ vehicles increased long-15 
distance trip-making rates by 21.6%. Shifting the sample toward having at least an associate degree by 1 16 
SD also increased trip frequency by 24%. 17 

Table 3 presents the coefficient estimates of the multinomial logit model to estimate trip season with 18 
summertime travel as the base alternative. The probability of taking a long-distance journey in the spring 19 
rises with age. Fall is a less popular time for long-distance trips among adults than summer. Table 4 presents 20 
the coefficient estimates of the multinomial logit trip purpose models with 10 alternatives, keeping the 21 
commute trips as the base. The trip purposes considered in the model include commute (9%), business 22 
(7%), shopping (18%), personal business (11%), school (1%), medical/dental (4%), religious or community 23 
(1%), visits to friends and relatives (19%), social leisure (28%), and other purposes (1%). The purpose 24 
model predicted that as household income increases, the probability of making long-distance business trips 25 
and personal trips (except medical/dental trips) increases as compared to daily long-distance work 26 
(commute) trips. There is a high probability of making business trips in the spring and fall seasons. With 27 
an increase in age, individuals tend to make more medical/dental, business, shopping, religious, and other 28 
social leisure trips than commute and school trips. 29 

Table 2. ZINB Model for Long-distance Trip Frequency Using 2016/17 NHTS Household Data 30 

Negative binomial (NB) model coefficients  
Variable Estimate t-stat P-value Pract. Sign. 
(Intercept) 0.799 3.62 0.000 - 
Male 0.172 7.85 0.000 0.216 
Age  -0.002 -3.52 0.000 -0.099 
Ln (HH income) ($) -0.079 -2.72 0.006 0.507 
Education associate degree or higher 0.191 6.84 0.000 0.216 
#Adults -0.228 -14.71 0.000 -0.460 
Worker -0.080 -3.95 0.000 -0.077 
HH vehicle count 0.141 12.40 0.000 0.657 
ln(θ) 15.45 6.44 0.017 - 
Zero-inflation (ZI) model coefficients  
Variable Estimate t-stat P-value Pract. Sign. 
(Intercept) 7.125 31.49 0.000 - 
Ln (HH income) ($) -0.043 -4.04 0.000 0.507 
HH vehicle count -0.410 -19.80 0.000 0.657 

   n = 201,820, Pseudo-R2 = 0.015 31 
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Table 3. Coefficient Estimates of the MNL Model for Trip Season (Base Season: Summer) 1 

 Fall Trip Winter Trip Spring Trip 
Estimate t-Stat P-value Estimate t-Stat P-value Estimate t-Stat P-value 

(Intercept) 0.034 0.341 0.733 -0.630 -6.92 0.000 -0.828 -6.55 0.000 
Male 0.270 6.16 0.000 0.270 6.16 0.000 0.270 6.16 0.000 
Age - - - - - - 0.010 7.55 0.000 
College 
Educated or 
Higher 

0.167 2.49 0.013 0.217 3.07 0.002 0.117 1.775 0.076 

Income ($1000) 0.001 1.45 0.147 - - - - - - 
HH Size -0.097 -5.03 0.000 -0.097 -5.03 0.000 -0.097 -5.03 0.000 
#Vehicle Owned 0.091 4.88 0.000 0.091 4.88 0.000 0.091 4.88 0.000 
Employed? -0.250 -5.56 0.000 - - - -0.250 -5.56 0.000 
#Adults -0.113 -3.54 0.000 - - - 0.084 2.73 0.006 

: 0.00132Adj. Rho, 10,455=  n 

 2 

Table 4. Coefficient Estimates of the MNL Model for Trip Purposes (Base Purpose: Commute) 3 

 Business Shop Other 
Personal School 

Medical 
& 

Dental 
Religious 

Visit 
friends/ 
relatives 

Social 
leisure Other 

Intercept −0.543* 2.916*** 2.498*** 2.051*** −0.156 −1.665*** 2.806*** 3.237*** −11.123*** 

Worker? - −2.178*** −1.870*** −3.997*** −3.244*** −2.013*** −2.131*** −2.392*** - 

Age 0.012*** 0.007*** 0.013*** −0.130*** 0.041*** 0.020*** 0.005*** - 0.093*** 

Male? - −0.499*** −0.658*** - −0.197 - −0.731*** −0.622*** - 

Fall Trip? 0.738*** - −0.247** 1.018*** 0.202 - 0.337*** - - 

Winter 
trip? - −0.602*** −0.556*** −0.567*** - - - −0.616*** - 

Spring 
trip? 0.683*** −0.374*** −0.679*** - - - - −0.663*** 3.172*** 

Associate 
degree or 
higher? 

0.422*** 0.279*** - 1.980*** - - 0.358*** 0.391*** - 

HH size −0.074* −0.126 −0.103** - - −0.106 −0.205*** - - 

#Adults −0.858*** −0.436*** −0.188** - - - - −0.419*** - 

HH 
income 
($1000) 

0.014*** 0.007*** 0.006*** 0.016*** −0.018*** 0.009*** 0.007*** 0.009*** 0.022*** 

White? - 0.273*** - −0.548* - - - 0.396*** - 

#Vehicle −0.101** - −0.115*** −0.255** - - −0.202*** - −0.990*** 

n = 11,414 & Pseudo R2 = 0.2501, *0.01 to 0.1, **0.001 to 0.01, ***0.000  

Figure 2 illustrates the practical significance of all statistically significant variables in the vehicle 4 
ownership (Figure 2a) and party size (Figure 2b) models. Figure 2a indicates that a 1-SD change in each 5 
household’s income or the number of workers per adult in the household increase predicted vehicle 6 
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ownership counts by 24% and 12%, respectively. A 1-SD rise in the population density (logged) of the 1 
census tract of the household home location reduces this ownership by about 27%. Increasing the number 2 
of drivers in a household by 1-SD increases vehicle ownership by more than 80%. The average model-3 
predicted number of passengers in a long-distance travel party falls by 25% when the commute-purpose 4 
variable rises by 1 SD, and by 19% when the business trip indicator rises by 1 SD. A 1 SD increase in the 5 
female gender indicator increases party size by 11%.  6 

a) 

 

b) 

 
Figure 2. Impacts of Statistically Significant Covariates on a) Vehicle Ownership, b) Trip Party 7 

Size (% Average Change in Predicted Y Following a 1 SD Increase in the X Covariate) 8 

Mode and destination choice models for long-distance domestic trips were estimated for business and 9 
non-business trips in a joint model before and after AVs become available using the 2021 long-distance 10 
AV survey.Uncommon existing long-distance modes (including bus, rail, and boats) were not included, so 11 
only air, rental car, personal car, and AVs were permitted. To consider chain trips, we summed the time 12 
and costs of all legs of trips. The specifications of the joint revealed and stated preference logit models for 13 
non-business trips with AVs are presented in Table 5. The operational cost of AVs was considered $0.70 14 
per mile. The operational cost of human-driven personal vehicles was assumed $0.50 per mile, while the 15 
cost of a rental car was $50 per driving day (minimum 1 day) in addition to $0.10 per mile. To avoid the 16 
correlation between travel costs and times, the residuals of travel costs from travel times were considered 17 
in the mode choice models. The specifications of the mode choice model for non-business trips show that 18 
users are more willing to use airplanes for trips longer than 500 miles. In addition, AVs have an inverse 19 
relationship with age and a direct relation with having at least a college degree. Rental cars have a higher 20 
utility for trips with higher party sizes. Due to the low number of observations in the survey for business 21 
trips, the non-business model was adjusted by lowering the impact of cost in these trips’ mode choice. 22 

 23 

 24 

Table 5. Specifications of the Logit Mode Choice Model After AVs Using Joint Stated Preference 25 
and Revealed Preference LD-AV Survey Data, EPA Smart, and RSG rJourney Data 26 

 Estimate t-ratio P-value 

-50 -40 -30 -20 -10 0 10 20 30 40 50

Income per HH size ($1000)
#Workers per #adults in HH

#Children in HH
White

#Drivers
ln(Home tract pop. density)

% Change in Avg Y from 1 SD change in X
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ASC car 0 - - 
ASC air -1.187 -7.464 0.000 
ASC rental car -0.710 -10.803 0.000 
ASC AV -0.090 -0.291 0.385 
Travel time x car -0.281 -5.469 0.000 
Travel time x air -0.270 -2.282 0.011 
Travel time x rental car -0.103 -3.618 0.000 
Travel time x AV -0.113 -4.815 0.000 
Access/egress distance x air -0.028 -3.666 0.000 
Residual of cost from travel time -0.002 -3.777 0.000 
Long-distance>500 mi x air 1.914 4.120 0.000 
Party size rental x car 0.129 2.591 0.005 
Female x car -0.207 -1.336 0.091 
Age x AV -0.023 -3.472 0.000 
Associate degree x AV 0.725 2.459 0.007 
μ revealed preference 1.000 - - 
μ stated preference 0. 752 11.398 0.000 
n = 584, R-squared: 0.3513    

The destination choice models with the strategic sampling of 300 alternatives are presented in Table 6. 1 
The results of the destination choice model suggest that the number of retail, industrial, service, public 2 
administration, and medical jobs at the destination tract are important contributors to business and non-3 
business trips. The utility of destination rises when the accessibility term and/or the population density 4 
increases at the destination’s tract. 5 
Table 6. Destination Choice Model Specifications Using 2016/17 NHTS, EPA Smart Location, and 6 

rJourney Data 7 
 Non-business Trips Business Trips 
 Estimate t-Stat P-Value Estimate t-Stat P-Value 
Mode choice logsum 0.017 122.96 0.000 0.011 50.49 0.000 
Destination population 
density at the tract level 
(persons/sq mi) 

0.002 1.60 0.109 0.005 2.61 0.009 

#Retail jobs in tract -0.068 -8.62 0.000 -0.049 -2.38 0.017 
#Industrial jobs in tract 0.027 3.20 0.001 0.021 1.04 0.297 
#Service jobs in tract 0.019 2.17 0.030 0.057 2.56 0.010 
#Public administration jobs 
in tract -0.019 -3.90 0.000 - - - 

#Medical jobs in tract - - - -0.044 -2.81 0.005 

 n = 9,325, Pseudo-R2: 0.060  n = 1802, Pseudo-R2: 0.060 
 8 

The application of the models presented in Tables 2-6 and Figure 2 to the 10% synthetic US population 9 
indicated 0.85 vehicles per capita in 2019, which is consistent with the vehicle per capita of 0.83 in 2020 10 
based on the US census data. After AVs are in the market in the future (e.g., in the year 2040) with an AV 11 
technology premium of $3,500, 61% of households are estimated to have AVs. The model applications 12 
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suggest that Americans conducted 2.00 long-distance trips per person per month in 2019. We also validated 1 
the outcomes of all models with their relevant datasets after the application to evaluate their performance. 2 
For instance, the application of the synthetic population to the trip season model resulted in the following 3 
trip distribution: 30% in summer, 28% in fall, 22% in winter trips, and 19% in spring. In comparison, the 4 
distribution of trips in the NHTS data is 31% summer, 25% fall, 20% winter, and 24% spring. 5 

Based on the results of the 2020 AV survey and previous studies, such as Huang et al. (2020), it is 6 
assumed that AVs will increase trip counts by 15%. As shown in Figure 3, mode splits for long-distance, 7 
domestic trips prior to AV access were estimated as 64.1% by private automobile, 30.4% by rental car, and 8 
5.5% by air. After AVs become available for purchase (with a premium cost of $3,500) and SAVs are 9 
available with $0.70/mile operation cost, mode splits shift to 31.7% by conventional human-driven vehicle, 10 
23.0% by conventional rental car, 23.5% by AV, 18.2% by SAVs, and 3.5% by air. Figure 4 summarizes 11 
the results of the destination choice model for the synthetic population. Assuming a $3,500 AV technology 12 
cost premium in today’s dollars in 2040, total person-miles traveled (PMT) per capita in long-distance trips 13 
is estimated to rise 35% (from 280 to 379 miles per month). For the same AV technology cost premium 14 
scenario, vehicle-miles traveled (VMT) in long-distance trips increases from 121 to 152 miles per capita 15 
per month as many travelers shift from air to cars and shorter trips.  16 

 17 

Figure 3. Mode Share Shift Before and After AVs Are in the Market with Technology Cost of $3500 18 

 19 

Figure 4. Shift in Person-miles Traveled (PMT) of Long-distance Trips after AVs are in the Market 20 

SUMMARY AND CONCLUSIONS 21 
This research forecasted the effects of automated cars on long-distance (over 75 miles one-way) domestic 22 
passenger travel frequency, destination, mode, party size, and scheduling inside the US. Different datasets 23 
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were used to derive equations for such choices with and without AVs using Poisson, negative binomial, 1 
zero-inflated negative binomial distributions, and multinomial logit models.  These estimations relied on 2 
the nation’s PUMS with 2015-19 data (as released in 2019), a survey of 1,004 US respondents (45% 3 
residing in Texas and 55% in other US states) in 2021 to revealed and stated preference questions about 4 
recent trips and future trip scenarios (Huang et al. 2022), the 2016/17 NHTS, the EPA Smart Location data 5 
(for land use attributes at the tract level), and FHWA’s rJourney data for long-distance passenger trips in 6 
2010 (to extract travel time and cost skims). To simulate US long-distance domestic passenger travel, this 7 
study used synthesized household and person data and the set of estimated travel demand models for trip 8 
frequency, trip season, travel purpose, vehicle ownership, party size, mode choice, and destination choice 9 
models. The synthetic population is comprised of 28.1M persons in 12.1M households across 2,351 10 
PUMAs, to mimic the nation’s population distribution (across 50 states and the District of Columbia). The 11 
synthetic population is consistent with census datasets using the nation’s 73,056 census tracts.   12 

Model applications with the 10% US synthetic population suggested an average party size of 2.04 13 
persons for long-distance trips, which is assumed to remain stable after the introduction of AVs. Vehicle 14 
ownership model application estimated 0.85 vehicles per capita for 2019, which is consistent with the 15 
vehicle per capita of 0.83 in 2020 based on the US census data. 2.00 LD trips over 75 miles per month per 16 
capita were estimated for the 10% synthetic population, which matches the NHTS data. Assuming a $3,500 17 
technology cost premium (e.g., in the year 2040), total person-miles traveled per capita for existing long-18 
distance trips are estimated to rise 35% (from 280 to 379 miles per month). The increase in person-miles 19 
traveled can be attributed to both an uptick in trip frequency and longer trip distances for ground trips, 20 
facilitated by the convenience of driving with AVs. It is important to note that as a result of the mode shift 21 
from air trips (decreasing from 5.5% to 3.5%) to ground trips following the adoption of AVs, the person-22 
miles traveled for very long-distance trips have been reduced. The results of this study provide insights on 23 
how future long-distance travel patterns will change after AVs are in the market on a large scale. 24 

This study utilized comprehensive data sources, including the 2016/17 NHTS dataset and a survey 25 
across the US, and synthesized a subset of the US population based on the ACS data to implement the 26 
models. Sampling standards were rigorously followed in both the survey and population synthesis. The 27 
inclusion of relevant variables, guided by both practical and statistical significance, further enhanced the 28 
predictability of the presented models. All models and results in this study are reproducible upon access to 29 
the datasets, which were obtained from various US agencies or gathered through a project that funded this 30 
study. For future research, the shift in trip destinations could be investigated using a stated preference 31 
survey, like the mode choice of this study. In addition, the potential impacts of AVs on international trips, 32 
especially to Canada and Mexico, should be investigated. 33 
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