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ABSTRACT 

The dominant approach in the literature to dealing with sample selection is to assume a bivariate 

normality assumption directly on the error terms, or on transformed error terms, in the discrete and 

continuous equations. Such an assumption can be restrictive and inappropriate, since the implication 

is a linear and symmetrical dependency structure between the error terms. In this paper, we introduce 

and apply a flexible approach to sample selection in the context of built environment effects on 

travel behavior. The approach is based on the concept of a “copula”, which is a multivariate 

functional form for the joint distribution of random variables derived purely from pre-specified 

parametric marginal distributions of each random variable. The copula concept has been recognized 

in the statistics field for several decades now, but it is only recently that it has been explicitly 

recognized and employed in the econometrics field. The copula-based approach retains a parametric 

specification for the bivariate dependency, but allows testing of several parametric structures to 

characterize the dependency.  The empirical context in the current paper is a model of residential 

neighborhood choice and daily household vehicle miles of travel (VMT), using the 2000 San 

Francisco Bay Area Household Travel Survey (BATS). The sample selection hypothesis is that 

households select their residence locations based on their travel needs, which implies that observed 

VMT differences between households residing in neo-urbanist and conventional neighborhoods 

cannot be attributed entirely to the built environment variations between the two neighborhoods 

types. The results indicate that, in the empirical context of the current study, the VMT differences 

between households in different neighborhood types may be attributed to both built environment 

effects and residential self-selection effects. As importantly, the study indicates that use of a 

traditional Gaussian bivariate distribution to characterize the relationship in errors between 

residential choice and VMT can lead to misleading implications about built environment effects.   
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1. INTRODUCTION 

Sample selection has been extensively studied in the econometrics literature, and has been 

recognized in the analysis of several empirical contexts in a variety of fields (see Vella, 1998, 

McEwan, 2000, and Hamilton and Nickerson, 2003 for extensive surveys). While there are several 

different variants of the sample selection effect, almost all of them may be motivated in an empirical 

context from a selective sample observation effect or a potential endogenous treatment effect.  

A selective sample observation effect occurs when observations on an outcome variable of 

interest are observed only if a certain endogenous binary condition is met. For instance, in surveys, 

household income is available only for those households that choose to report income, or global 

positioning system (GPS)-based data is available only from households who agree to have GPS units 

installed in their vehicles (see Bhat, 1994, Bricka and Bhat, 2006). In both these cases, the 

household’s choice to be included in the sample may be a function of the outcome variable of 

interest, due to common unobserved factors influencing both the discrete choice of sample inclusion 

and the outcome variable. For instance, households who would not like to reveal certain income 

sources, or do not want to risk the remote possibility of an audit, may skip the income question in a 

survey, leaving the possibility that those who report income earn lower incomes than those who do 

not (after controlling for observed factors). Similarly, households who do not have the time to have 

their vehicles installed with GPS units may be the ones who travel more, in which case the travel 

indicators from the GPS sample may be an underestimate of the overall population travel intensity. 

A potential endogenous treatment effect occurs, for example, when studying the beneficial 

impact of training programs on test performance or the effect of driver seat belt use on injury 

severity. In the former case, individuals who enroll in the training program may be more highly 

motivated than those who do not enroll in the program. If individuals who enroll in the training 
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program are observed to perform better on the test than those who do not enroll, part of this effect 

may be attributable simply to the higher motivation of the enrollees relative to non-enrollees. Since 

“motivation” levels of respondents is rather difficult to collect data on, this unobserved 

characteristic, if not controlled for, can lead to an overinflated estimate of training program benefits 

(Heckman et al., 1998, Abadie et al., 2001, Almus and Czarnitzki, 2003, Heckman and Vytalcil, 

2007). In the latter case, seat belt users may be intrinsically less aggressive and less risk-taking 

drivers relative to seat belt non-users. Thus, if seat belt users are observed to incur less severe 

injuries in crashes, part of this may be a simple manifestation of their more defensive driving habits 

(see Petridou and Moustaki, 2000, and Eluru and Bhat, 2007). If the defensive driving habits are not 

available in the data, and the endogeneity of seat belt use is not explicitly controlled for, the results 

can be an artificially inflated estimate of seat belt use effectiveness.  

In both the selective sample observation effect and the endogenous treatment effect cases 

discussed above, the basic econometric problem is that an endogenous discrete choice (decision to 

participate or decision to use treatment) potentially affects observed outcome data. Of course, the 

discrete choice need not be confined to a binary choice as in the examples provided above. Rather, it 

can represent a polychotomous choice situation. Also, the endogenous treatment effect can be 

extended to the case of Roy’s (1951) endogenous switching effect where the outcome model not 

only includes dummy variables for the discrete choices, but also includes interactions of observed 

variable effects with the dummy variable indicators (see Barnard and Hensher, 1992, Hamed and 

Mannering, 1993, and Bhat, 1996 for transportation-related examples of polychotomous discrete 

choices and switching effects).  

The classic econometric approach to deal with the above sample selection situations is to use 

Heckman’s or Lee’s approaches or their variants (Heckman, 1974, 1976, 1979, 2001, Greene, 1981, 
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Lee, 1982, 1983, Dubin and McFadden, 1984). Heckman’s (1974) original approach used a full 

information maximum likelihood method with normally distributed error terms in the binary discrete 

choice and the continuous outcome, and adopted a bivariate normal distribution between the two 

error terms. Lee (1983) generalized Heckman’s approach by using a technique to transform non-

normal variables into normal variates, and then adopting a bivariate normal distribution to couple the 

transformed normal variables. Thus, while maintaining an efficient full-information likelihood 

approach, Lee’s method relaxes the normality assumption on the marginals but still imposes a 

bivariate normal coupling. The method can also be used for multinomial choice situations. In 

addition to these full-information likelihood methods, there are also two-step and more robust 

parametric approaches that impose a specific form of linearity between the error term in the discrete 

choice and the continuous outcome (rather than a pre-specified bivariate joint distribution). These 

approaches are based on the Heckman method for the binary choice case, which was generalized by 

Hay (1980) and Dubin and McFadden (1984) for the multinomial case. The approach involves the 

first step estimation of the discrete choice equation given distributional assumptions on the choice 

model error terms, followed by the second step estimation of the continuous equation after the 

introduction of a correction term that is an estimate of the expected value of the continuous equation 

error term given the discrete choice. However, these two-step methods do not perform well when 

there is a high degree of collinearity between the explanatory variables in the choice equation and 

the continuous outcome equation, as is usually the case in empirical applications.  This is because 

the correction term in the second step involves a non-linear function of the discrete choice 

explanatory variables. But this non-linear function is effectively a linear function for a substantial 

range, causing identification problems when the set of discrete choice explanatory variables and 

continuous outcome explanatory variables are about the same. The net result is that the two-step 
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approach can lead to unstable and unreliable estimates for the outcome equation (see Leung and Yu, 

1996, 2000, Bockstael et al., 1990, Puhani, 2000). 

 Overall, Lee’s  full information maximum likelihood approach has seen more application in 

the literature relative to the other approaches just described because of its simple structure, ease of 

estimation using a maximum likelihood approach, and its lower vulnerability to the collinearity 

problem of two-step methods. But Lee’s approach is also critically predicated on the bivariate 

normality assumption on the transformed normal variates in the discrete and continuous equation, 

which imposes the restriction that the dependence between the transformed discrete and continuous 

choice error terms is linear and symmetric. There are two ways that one can relax this joint bivariate 

normal coupling used in Lee’s approach. One is to use semi-parametric or non-parametric 

approaches to characterize the relationship between the discrete and continuous error terms, and the 

second is to test alternative copula-based bivariate distributional assumptions to couple error terms. 

Each of these approaches is discussed in turn next. 

 

1.1 Semi-Parametric and Non-Parametric Approaches  

The potential econometric estimation problems associated with Lee’s parametric distribution 

approach has spawned a whole set of semi-parametric and non-parametric two-step estimation 

methods to handle sample selection, apparently having beginnings in the semi-parametric work of 

Heckman and Robb (1985). The general approach in these methods is to first estimate the discrete 

choice model in a semi-parametric or non-parametric fashion using methods developed by, among 

others, Coslett (1983), Gallant and Nychka (1987), Powell et al. (1986), Ichimura (1993), Matzkin 

(1992, 1993), and Briesch et al. (2002). These estimates then form the basis to develop an index 

function to generate a correction term in the continuous equation that is an estimate of the expected 
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value of the continuous equation error term given the discrete choice. While in the two-step 

parametric methods, the index function is defined based on the assumed marginal and joint 

distributional assumptions, or on an assumed marginal distribution for the discrete choice along with 

a specific linear form of relationship between the discrete and continuous equation error terms, in the 

semi- and non-parametric approaches, the index function is approximated by a flexible function of 

parameters such as the polynomial, Hermitian, or Fourier series expansion methods (see Coslett, 

1991, Newey, 1997, and Dahl, 2002; Vella, 1998 and Bourguignon et al., 2007 provide good 

reviews). But, of course, there are “no free lunches”. The semi-parametric and non-parametric 

approaches involve a large number of parameters to estimate, are relatively very inefficient from an 

econometric estimation standpoint, typically do not allow the testing and inclusion of a rich set of 

explanatory variables with the usual range of sample sizes available in empirical contexts, and are 

difficult to implement. Further, the computation of the covariance matrix of parameters for inference 

is anything but simple in the semi- and non-parametric approaches.  The net result is that the semi- 

and non-parametric approaches have been pretty much confined to the academic realm and have 

seen little use in actual empirical application. 

 

1.2 The Copula Approach  

The turn toward semi-parametric and non-parametric approaches to dealing with sample selection 

was ostensibly because of a sense that replacing Lee’s parametric bivariate normal coupling with 

alternative bivariate couplings would lead to substantial computational burden. However, an 

approach referred to as the “Copula” approach has recently revived interest in maintaining a Lee-like 

sample selection framework, while generalizing Lee’s framework to adopt and test a whole set of 

alternative bivariate couplings that can allow non-linear and asymmetric dependencies. A copula is 
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essentially a multivariate functional form for the joint distribution of random variables derived 

purely from pre-specified parametric marginal distributions of each random variable. The reasons for 

the interest in the copula approach for sample selection models are several. First, the copula 

approach does not entail any more computational burden than Lee’s approach. Second, the approach 

allows the analyst to stay within the familiar maximum likelihood framework for estimation and 

inference, and does not entail any kind of numerical integration or simulation machinery. Third, the 

approach allows the marginal distributions in the discrete and continuous equations to take on any 

parametric distribution, just as in Lee’s method. Finally, under the copula approach, Lee’s coupling 

method is but one of a suite of different types of couplings that can be tested.  

 

1.3 Focus of Current Paper and Paper Structure 

In this paper, we apply the copula approach to sample selection in the empirical context of 

examining built environment effects on vehicle miles of travel (VMT). Specifically, we model the 

potential endogeneity of household residential choice decisions when modeling household VMT. 

Household residential choice is considered in the form of a choice between living in a neo-urbanist 

or a conventional neighborhood. A neo-urbanist neighborhood is one with high population density, 

high bicycle lane and roadway street density, good land-use mix, and good transit and non-

motorized mode accessibility/facilities. A conventional neighborhood is one with relatively low 

population density, low bicycle lane and roadway street density, primarily single use residential land 

use, and auto-dependent urban design. The question is whether differences in VMT between 

households in conventional and neo-urbanist households is due to “true” effects of the built 

environment, or due to households self-selecting themselves into neighborhoods based on their VMT 

desires. For instance, it is at least possible (if not likely) that unobserved factors that increase the 
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propensity or desire of a household to reside in a conventional neighborhood (such as overall auto 

inclination, a predisposition to enjoying travel, safety and security concerns regarding non-auto 

travel, etc.) also lead to the household putting more vehicle miles of travel on personal vehicles. If 

this self selection is not accounted for, the difference in VMT attributed directly to the variation in 

the built environment between conventional and neo-urbanist neighborhoods can be mis-estimated. 

On the other hand, accommodating for such self-selection effects can aid in identifying the “true” 

causal effect of the built environment on VMT.  

 The rest of this paper is structured as follows. The next section provides a theoretical 

overview of the copula approach, and presents several important copula structures. Section 3 

discusses the use of copulas in sample selection models. Section 4 provides an overview of the data 

sources and sample used for the empirical application. Section 5 presents and discusses the modeling 

results. The final section concludes the paper by highlighting paper findings and summarizing 

implications. 

 

2. OVERVIEW OF THE COPULA APPROACH 

2.1 Background 

The incorporation of dependency effects in econometric models can be greatly facilitated by using a 

copula approach for modeling joint distributions, so that the resulting model can be in closed-form 

and can be estimated using direct maximum likelihood techniques (the reader is referred to Trivedi 

and Zimmer, 2007 or Nelsen, 2006 for extensive reviews of copula theory, approaches, and 

benefits). The word copula itself was coined by Sklar, 1959 and is derived from the Latin word 

“copulare”, which means to tie, bond, or connect (see Schmidt, 2007). Thus, a copula is a device or 

function that generates a stochastic dependence relationship (i.e., a multivariate distribution) among 
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random variables with pre-specified marginal distributions. In essence, the copula approach 

separates the marginal distributions from the dependence structure, so that the dependence structure 

is entirely unaffected by the marginal distributions assumed. This provides substantial flexibility in 

correlating random variables, which may not even have the same marginal distributions.  

The effectiveness of a copula approach has been recognized in the statistics field for several 

decades now (see Schweizer and Sklar, 1983, Ch. 6), but it is only recently that copula-based 

methods have been explicitly recognized and employed in the finance, actuarial science, 

hydrological modeling, and econometrics fields (see, for example, Embrechts et al., 2002, Cherubini 

et al., 2004, Frees and Wang, 2005, Genest and Favre, 2007, Grimaldi and Serinaldi, 2006, Smith, 

2005, Prieger, 2002, Zimmer and Trivedi, 2006, Cameron et al., 2004,  Junker and May, 2005, and 

Quinn, 2007). The precise definition of a copula is that it is a multivariate distribution function 

defined over the unit cube linking uniformly distributed marginals. Let C be a K-dimensional copula 

of uniformly distributed random variables U1, U2, U3, …, UK with support contained in [0,1]K. Then,  

Cθ (u1, u2, …, uK) = Pr(U1 < u1, U2 < u2, …, UK < uK), (1) 

where θ  is a parameter vector of the copula commonly referred to as the dependence parameter 

vector. A copula, once developed, allows the generation of joint multivariate distribution functions 

with given marginals. Consider K random variables Y1, Y2, Y3, …, YK, each with univariate 

continuous marginal distribution functions Fk(yk) = Pr(Yk < yk), k =1, 2, 3, …, K. Then, by the 

integral transform result, and using the notation (.)1−
kF  for the inverse univariate cumulative 

distribution function, we can write the following expression for each k (k = 1, 2, 3, …, K): 

)).(Pr())(Pr()Pr()( 1
kkkkkkkkkk yFUyUFyYyF <=<=<= −  (2) 

Then, by Sklar’s (1973) theorem, a joint K-dimensional distribution function of the random variables 

with the continuous marginal distribution functions Fk(yk) can be generated as follows: 
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F(y1, y2, …, yK) = Pr(Y1 < y1, Y2 < y2, …, YK < yK) = Pr(U1 < F1(y1),, U2 < F2(y2), …,UK < FK(yK))  

                         = Cθ (u1 = F1(y1), u2 = F2(y2),…, uK = FK(yK)).  (3) 

Conversely, by Sklar’s theorem, for any multivariate distribution function with continuous marginal 

distribution functions, a unique copula can be defined that satisfies the condition in Equation (3). 

 Copulas themselves can be generated in several different ways, including the method of 

inversion, geometric methods, and algebraic methods (see Nelsen, 2006; Ch. 3). For instance, given 

a known multivariate distribution F(y1, y2, …, yK) with continuous margins Fk(yk), the inversion 

method inverts the relationship in Equation (3) to obtain a copula: 

Cθ (u1, u2, …, uK) = Pr(U1 < u1, U2 < u2, …, UK < uK)  

 = Pr(Y1 < F–1
1(u1), Y2 < F–1

2(u2), ..., Y3 < F–1
3(u3)) (4) 

 = F(y1 = F–1
1(u1), y2 = F–1

2(u2), ..., yK = F–1
k(uk)). 

Once the copula is developed, one can revert to Equation (3) to develop new multivariate 

distributions with arbitrary univariate margins.  

 A rich set of copula types have been generated using the inversion and other methods, 

including the Gaussian copula, the Farlie-Gumbel-Morgenstern (FGM) copula, and the Archimedean 

class of copulas (including the Clayton, Gumbel, Frank, and Joe copulas). These copulas are 

discussed later in the context of bivariate distributions. In such bivariate distributions, while θ can be 

a vector of parameters, it is customary to use a scalar measure of dependence. In the next section, we 

discuss some copula properties and dependence structure concepts for bivariate copulas, though 

generalizations to higher dimensions are possible. 
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2.2 Copula Properties and Dependence Structure 

Consider any bivariate copula ) ,( 21 uuCθ . Since this is a bivariate cumulative distribution function, 

the copula should satisfy the well known Fréchet-Hoeffding bounds (see Kwerel, 1988). 

Specifically, the Fréchet lower bound ) ,( 21 uuW  is )0 ,1max( 21 −+ uu  and the Fréchet upper bound 

) ,( 21 uuM  is ) ,min( 21 uu . Thus, 

). ,() ,() ,( 212121 uuMuuCuuW ≤≤ θ  (5) 

From Sklar’s theorem of Equation (3), we can also re-write the equation above in terms of Fréchet 

bounds for the multivariate distribution ) ,( 21 yyF  generated from the copula ) ,( 21 uuCθ : 

)).( ),(min() ,()0 ,1)()(max( 2211212211 yFyFyyFyFyF ≤≤−+  (6) 

If the copula ) ,( 21 uuCθ  is equal to the lower bound ) ,( 21 uuW  in Equation (5), or equivalently if 

) ,( 21 yyF  is equal to the lower bound in Equation (6), then the random variables 1Y  and 2Y  are 

almost surely decreasing functions of each other and are called “countermonotonic”. On the other 

hand, if the copula ) ,( 21 uuCθ  is equal to the upper bound ) ,( 21 uuM  in Equation (5), or equivalently 

if ) ,( 21 yyF  is equal to the upper bound in Equation (6), then the random variables 1Y  and 2Y  are 

almost surely increasing functions of each other and are called “comonotonic”. The case when 

2121 ) ,( uuuuC =Π=θ , or equivalently )()() ,( 221121 yFyFyyF = , corresponds to stochastic 

independence between 1Y  and 2Y . 

Different copulas provide different levels of ability to capture dependence between Y1 and Y2 

based on the degree to which they cover the interval between the Fréchet-Hoeffding bounds. 

Comprehensive copulas are those that (1) attain or approach the lower bound W as θ approaches the 

lower bound of its permissible range, (2) attain or approach the upper bound M as θ approaches its 

upper bound, and (3) cover the entire domain between W and M (including the product copula case 
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Π as a special or limiting case). Thus, comprehensive copulas parameterize the full range of 

dependence as opposed to non-comprehensive copulas that are only able to capture dependence in a 

limited manner. As we discuss later, the Gaussian and Frank copulas are comprehensive in their 

dependence structure, while the FGM, Clayton, Gumbel, and Joe copulas are not comprehensive.  

To better understand the generated dependence structures between the random variables 

) ,( 21 YY  based on different copulas, and examine the coverage offered by non-comprehensive 

copulas, it is useful to construct a scalar dependence measure between 1Y  and 2Y  that satisfies four 

properties as listed below (see Embrechts et al., 2002): 

(1) ),(),( 1221 YYYY δδ =   

(2) 1),(1 21 ≤≤− YYδ   (7) 

(3) otoniccountermon ),(1 ),( c;comonotoni ),(1),( 21212121 YYYYYYYY ⇔−=⇔= δδ  

(4) )),(),((),( 221121 YGYGYY δδ =  where 1G  and 2G  are two (possibly different) strictly 

increasing transformations. 

The traditional dependence concept of correlation coefficient ρ  (i.e., the Pearson’s product-

moment correlation coefficient) is a measure of linear dependence between Y1 and Y2. It satisfies the 

first two of the properties discussed above. However, it satisfies the third property only for bivariate 

elliptical distributions (including the bivariate normal distribution) and adheres to the fourth 

property only for strictly increasing linear transformations (see Embrechts et al., 2002 for specific 

examples where the Pearson’s correlation coefficient fails the third and fourth properties). In 

addition, 0=ρ  does not necessarily imply independence. A simple example given by Embrechts et 

al., 2002 is that 0),( 21 =YYρ  if Y1 ~ N (0,1) and 2
12 YY = , even though Y1 and Y2 are clearly 

dependent. This is because Cov(Y1, Y2) = 0 implies zero correlation, but the stronger condition that 
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Cov(G1(Y1), (G2(Y2)) = 0 for any functions G1 and G2 is needed for zero dependence. Other 

limitations of the Pearson’s correlation coefficient include that it is not informative for asymmetric 

distributions (Boyer et al., 1999), effectively goes to zero as one asymptotically heads into tail 

events just because the joint distribution gets flatter at the tails (Embrechts et al., 2002), and the 

attainable correlation coefficient values within the [–1, 1] range depend upon the margins F1(.) and 

F2(.). 

 The limitations of the traditional correlation coefficient have led statisticians to the use of 

concordance measures to characterize dependence. Basically, two random variables are labeled as 

being concordant (discordant) if large values of one variable are associated with large (small) values 

of the other, and small values of one variable are associated with small (large) values of the other. 

This concordance concept has led to the use of two measures of dependence in the literature: the 

Kendall’s τ  and the Spearman’s Sρ .  

Kendall’s τ  measure of dependence between two random variables (Y1, Y2) is defined as the 

probability of concordance minus the probability of discordance. Notationally,  

( ) ( )0)~)(~(0)~)(~(),( 2211221121 <−−−>−−= YYYYPYYYYPYYτ ,  (8) 

where )~,~( 21 YY is an independent copy of ),( 21 YY . The first expression on the right side is the 

probability of concordance of ),( 21 YY  and )~,~( 21 YY , and the second expression on the right side is 

the probability of discordance of the same two vectors. It is straightforward to show that if 

) ,( 21 uuCθ  is the copula for the continuous random variables ),( 21 YY , i.e., if 

))(  ),(() ,( 22211121 yFuyFuCyyF === θ , then the expression above collapses to the following (see 

Nelsen, 2006, page 159 for a proof): 

,1)],([41),(),(4),( 21]1,0[ 212121 2
−=−= ∫∫ UUCEuudCuuCYY θθθτ   (9) 
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where the second expression is the expected value of the function ),( 21 UUCθ of uniformly 

distributed random variables 1U and 2U with a joint distribution function C.  

Spearman’s Sρ  measure of dependence between two random variables ),( 21 YY  is defined as 

follows. Let )~,~( 21 YY  and ),( 21 YY
((

be independent copies of ),( 21 YY . That is, ),( 21 YY , )~,~( 21 YY , and 

),( 21 YY
((

 are all independent random vectors, each with a common joint distribution function F(.,.) 

and margins F1 and 2F . Then, Spearman’s Sρ  is three times the probability of concordance minus 

the probability of discordance for the two vectors ),( 21 YY  and ),~( 21 YY
(

: 

( ) ( )( )0))(~(0))(~(3),( 2211221121 <−−−>−−= YYYYPYYYYPYYS

((
ρ   (10) 

In the above expression, note that the distribution function for ),( 21 YY  is F(.,.), while the 

distribution function of ),~( 21 YY
(

is (.).(.) 21 FF  because of the independence of 1
~Y and 2Y

(
. The 

coefficient “3” is a normalization constant, since the expression in parenthesis is bounded in the 

region [–1/3, 1/3] (see Nelsen, 2006, pg 161). In terms of the copula ),( 21 uuCθ  for the continuous 

random variables ),( 21 YY , Sρ  can be simplified to the expression below: 

[ ] [ ]∫∫∫∫ −=−=−= 22 1,0 2,121211,0 212121 3)][(123),(123),(12),( UUEduduuuCuudCuuYYS θθρ   (11) 

where )( 111 YFU = and )( 222 YFU = are uniform random variables with joint distribution function 

),( 21 uuCθ . Since 1U and 2U have a mean of 0.5 and a variance of 1/12, the expression above can be 

re-written as: 

))(),((                 

)()(

)()()(
12/1

4/1)(
3)][(12),(

2211

21

212121
2121

YFYF

UVarUVar

UEUEUUEUUE
UUEYYS

ρ

ρ

=

−
=

−
=−=

 (12) 
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Thus, the Spearman Sρ  dependence measure for a pair of continuous variables ),( 21 YY is equivalent 

to the familiar Pearson’s correlation coefficient ρ  for the grades of 1Y  and 2Y , where the grade of 

1Y  is )( 11 YF and the grade of 2Y  is )( 22 YF . 

 The Kendall’s τ and the Spearman’s Sρ  measures can be shown to satisfy all the four 

properties listed in Equation (7). In addition, both assume the value of zero under independence and 

are not dependent on the margins (.)1F  and (.)2F . Hence, these two concordance measures are used 

to characterize dependence structures in the copula literature, rather than the familiar Pearson’s 

correlation coefficient.  

 

2.3 Alternative Copulas 

Several copulas have been formulated in the literature, and these copulas can be used to tie random 

variables together. In the bivariate case, given a particular bivariate copula, a bivariate distribution 

),( 21 yyF can be generated for two random variables 1Y (with margin 1F ) and 2Y  (with margin 2F ) 

using the general expression of Equation (3) as:  

))(),((),( 22211121 yFuyFuCyyF === θ  (13) 

For given functional forms of the margins, the precise bivariate dependence profile between the 

variables 1Y  and 2Y  is a function of the copula ),( 21 uuCθ used, and the dependence parameter θ . 

But, regardless of the margins assumed, the overall nature of the dependence between 1Y  and 2Y is 

determined by the copula. Note also that the Kendall’s τ and the Spearman’s Sρ  measures are 

functions only of the copula used and the dependence parameter in the copula, and not dependent on 

the functional forms of the margins. Thus, bounds on the τ  and Sρ  measures for any copula will 

apply to all bivariate distributions derived from that copula. In the rest of this section, we focus on 
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bivariate forms of the Gaussian copula, the Farlie-Gumbel-Morgenstern (FGM) copula, and the 

Archimedean class of copulas. To visualize the dependence structure for each copula, we follow 

Nelsen (2006) and Armstrong (2003), and first generate 1000 pairs of uniform random variates from 

the copula with a specified value of Kendall’s τ  (see 

http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/Supp_material.pdf for details of the procedure 

to generate uniform variates from each copula). Then, we transform these uniform random variates 

to normal random variates using the integral transform result ( )( 1
1

1 UY −Φ=  and )( 2
1

2 UY −Φ= ). 

For each copula, we plot two-way scatter diagrams of the realizations of the normally distributed 

random variables 1Y  and 2Y . In addition, Table 1 provides comprehensive details of each of the 

copulas. 

 

2.3.1 The Gaussian copula 

The Gaussian copula is the most familiar of all copulas, and forms the basis for Lee’s (1983) sample 

selection mechanism. The copula belongs to the class of elliptical copulas, since the Gaussian copula 

is simply the copula of the elliptical bivariate normal distribution (the density contours of elliptical 

distributions are elliptical with constant eccentricity). The Gaussian copula takes the following form: 

),),(),((),( 2
1

1
1

221 θθ uuuuC −− ΦΦΦ=   (14) 

where )(.,.,2 θΦ is the bivariate cumulative distribution function with Pearson’s correlation 

parameter )11( ≤≤− θθ . The Gaussian copula is comprehensive in that it attains the Fréchet lower 

and upper bounds, and captures the full range of (negative or positive) dependence between two 

random variables. However, it also assumes the property of asymptotic independence. That is, 

regardless of the level of correlation assumed, extreme tail events appear to be independent in each 

margin just because the density function gets very thin at the tails (see Embrechts et al., 2002). 
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Conversely, in the Gaussian copula, a positive (negative) correlation gets manifested as clustering 

along the southwest-to-northeast (northwest-to southeast) plane close to the center point of the joint 

distribution. However, toward extreme tails, there is scattering or dependence reduction. Further, the 

dependence structure is radially symmetric about the center point in the Gaussian copula. That is, for 

a given correlation, the level of dependence is equal in the upper and lower tails.1 On the other hand, 

extreme tail dependence and asymmetric tail dependence may be important characteristics in 

bivariate data (even after conditioning each marginal variable in terms of observed covariates).  

The Kendall’s τ  and the Spearman’s Sρ  measures for the Gaussian copula can be written in 

terms of the dependence (correlation) parameter θ  as )(sin)/2( 1 θπτ −=  and 

)2/(sin)/6( 1 θπρ −=S , where θθ =⇒= − )sin()(sin 1 zz . Thus, τ  and Sρ  take on values on [–1, 1]. 

The Spearman’s Sρ  tracks the correlation parameter closely.  

A visual scatter plot of realizations from the Gaussian copula-generated distribution for 

transformed normally distributed margins is shown in Figure (1a). A value of τ = 0.75 is used in the 

figure. Note that, for the Gaussian copula, the image is essentially the scatter plot of points from a 

bivariate normal distribution with a correlation parameter θ = 0.9239 (because we are using normal 

marginals). One can note the familiar elliptical shape with symmetric dependence. As one goes 

toward the extreme tails, there is more scatter, corresponding to asymptotic independence. The 

strongest dependence is in the middle of the distribution.  

  

                                                 
1 Mathematically, the dependence structure of a copula is labeled as “radially symmetric” if the following condition 
holds: Cθ(u1, u2) = u1 + u2 – 1 + Cθ(1 – u1, 1 – u2), where the right side of the expression above is the survival copula (see 
Nelsen, 2006, page 37).  Consider two random variables Y1 and Y2 whose marginal distributions are individually 
symmetric about points a and b, respectively. Then, the joint distribution F of Y1 and Y2 will be radially symmetric about 
points a and b if and only if the underlying copula from which F is derived is radially symmetric.  
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2.3.2 The Farlie-Gumbel-Morgenstern (FGM) copula  

The FGM copula was first proposed by Morgenstern (1956), and also discussed by Gumbel (1960) 

and Farlie (1960). It has been well known for some time in Statistics (see Conway, 1979, Kotz et al., 

2000; Section 44.13). However, until Prieger (2002), it does not seem to have been used in 

Econometrics. In the bivariate case, the FGM copula takes the following form: 

)1)(1(1[),( 212121 uuuuuuC −−+= θθ ].  (15) 

For the copula above to be 2-increasing (that is, for any rectangle with vertices in the domain of 

[0,1] to have a positive volume based on the function), θ must be in [–1, 1]. The presence of the θ 

term allows the possibility of correlation between the uniform marginals 1u  and 2u . Specifically, the 

density function for the FGM copula is: 

)21)(21(1),( 2121 uuuuc −−+= θθ .  (16) 

From above, it is clear that, when θ is positive, the density is higher if 1u  and 2u  are both high (both 

close to 1) or both low (both close to zero). On the other hand, when θ is negative, the density is 

higher if 1u  is high and 2u  is low, or if 2u  is high and 1u  is low. When θ is zero, it corresponds to 

independence. Otherwise, depending on whether θ is positive or negative, a positive or negative 

correlation, respectively, is generated between the continuous variables 1U  and 2U . Thus, the FGM 

copula has a simple analytic form and allows for either negative or positive dependence. Like the 

Gaussian copula, it also imposes the assumptions of asymptotic independence and radial symmetry 

in dependence structure.  

However, the FGM copula is not comprehensive in coverage, and can accommodate only 

relatively weak dependence between the marginals. The concordance-based dependence measures 
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for the FGM copula can be shown to be θτ
9
2

=  and θρ
3
1

=S , and thus these two measures are 

bounded on ⎥⎦
⎤

⎢⎣
⎡−

9
2,

9
2  and ⎥⎦

⎤
⎢⎣
⎡−

3
1,

3
1 , respectively.   

The FGM scatterplot for the normally distributed marginal case is shown in Figure (1b), 

where Kendall’s τ  is set to the maximum possible value of 2/9 (corresponding to θ = 1). The weak 

dependence offered by the FGM copula is obvious from this figure. 

 

 2.3.3 The Archimedean class of copulas 

The Archimedean class of copulas is popular in empirical applications (see Genest and MacKay, 

1986 and Nelsen, 2006 for extensive reviews). This class of copulas includes a whole suite of 

closed-form copulas that cover a wide range of dependency structures, including comprehensive and 

non-comprehensive copulas, radial symmetry and asymmetry, and asymptotic tail independence and 

dependence. The class is very flexible, and easy to construct. Further, the asymmetric Archimedean 

copulas can be flipped to generate additional copulas (see Venter, 2001).  

 Archimedean copulas are constructed based on an underlying continuous convex decreasing 

generator function ϕ  from [0, 1] to [0, ∞] with the following properties: ,0)(,0)1( <′= tϕϕ and 

0)( >′′ tϕ  for all )./)(;/)(( 10 22 ttttt ∂∂=′′∂∂=′<< ϕϕϕϕ  Further, in the discussion here, we will 

assume that ∞=)0(ϕ , so that an inverse 1−ϕ  exists. With these preliminaries, we can generate 

bivariate Archimedean copulas as: 

)],()([),( 21
1

21 uuuuC ϕϕϕθ += −   (17) 

where the dependence parameter θ is embedded within the generator function. Note that the above 

expression can also be equivalently written as: 
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)]()([)],([ 2121 uuuuC ϕϕϕ θ += .   (18) 

Using the differentiation chain rule on the equation above, we obtain the following important result 

for Archimedean copulas that will be relevant to the sample selection model discussed in the next 

section: 

,
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)(),(
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21

uuC
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uuC

θ

θ

ϕ
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′
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=
∂

∂  where ttt ∂∂=′ /)()( ϕϕ .  (19) 

The density function of absolutely continuous Archimedean copulas of the type discussed later in 

this section may be written as: 

( )
( )[ ]

.
),(

)( )( ),(),( 3
21

2121
21 uuC

uuuuCuuc
ϕ

ϕϕϕ
θ ′

′′′′
−=    (20) 

Another useful result for Archimedean copulas is that the expression for Kendall’s τ in Equation (9) 

collapses to the following simple form (see Genest and Mackay, 1986 or Embrechts et al., 2002 for a 

derivation): 

dt
t
t

∫ ′
+=

1

0 )(
)(41

ϕ
ϕτ .  (21) 

In the rest of this section, we provide an overview of four different Archimedean copulas: the 

Clayton, Gumbel, Frank, and Joe copulas.  

 

2.3.3.1 The Clayton copula 

The Clayton copula has the generator function )1)(/1()( −= −θθϕ tt , giving rise to the following 

copula function (see Huard et al., 2006): 

. 0  ,)1(),( /1
2121 ∞<<−+= −−− θθθθ

θ uuuuC   (22) 
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The above copula, proposed by Clayton (1978), cannot account for negative dependence. It attains 

the Fréchet upper bound as ∞→θ , but cannot achieve the Fréchet lower bound. Using the 

Archimedean copula expression in Equation (21) for τ , it is easy to see that τ is related to θ by 

)2/( += θθτ , so that 0 < τ  < 1 for the Clayton copula. Independence corresponds to 0→θ .  

The figure corresponding to the Clayton copula for 75.0=τ  indicates asymmetric and 

positive dependence [see Figure (1c)]. The tight clustering of the points in the left tail, and the 

fanning out of the points toward the right tail, indicate that the copula is best suited for strong left 

tail dependence and weak right tail dependence. That is, it is best suited when the random variables 

are likely to experience low values together (such as loan defaults during a recession). Note that the 

Gaussian copula cannot replicate such asymmetric and strong tail dependence at one end.  

 

2.3.3.2 The Gumbel copula 

The Gumbel copula, first discussed by Gumbel (1960) and sometimes also referred to as the 

Gumbel-Hougaard copula, has a generator function given by θϕ )ln()( tt −= . The form of the copula 

is provided below: 

[ ]( ) . 1  , )ln()ln(exp),( /1
2121 ∞<≤−+−−= θ

θθθ
θ uuuuC    (23) 

Like the Clayton copula, the Gumbel copula cannot account for negative dependence, but attains the 

Fréchet upper bound as ∞→θ . Kendall’s τ  is related to θ  by )/1(1 θτ −= , so that 0 < τ  < 1, 

with independence corresponding to  1=θ .  

As can be observed from Figure (1d), the Gumbel copula for 75.0=τ  has a dependence 

structure that is the reverse of the Clayton copula. Specifically, it is well suited for the case when 

there is strong right tail dependence (strong correlation at high values) but weak left tail dependence 
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(weak correlation at low values). However, the contrast between the dependence in the two tails of 

the Gumbel is clearly not as pronounced as in the Clayton.  

 

2.3.3.3 The Frank copula 

The Frank copula, proposed by Frank (1979), is the only Archimedean copula that is comprehensive 

in that it attains both the upper and lower Fréchet bounds, thus allowing for positive and negative 

dependence. It is radially symmetric in its dependence structure and imposes the assumption of 

asymptotic independence. The generator function is )]1/()1ln[()( −−−= −− θθϕ eet t , and the 

corresponding copula function is given by: 

.   ,
1

)1)(1(1ln1),(
21

21 ∞<<∞−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−
+−= −

−−

θ
θ θ

θθ

θ e
eeuuC

uu

  (24) 

Kendall’s τ  does not have a closed form expression for Frank’s copula, but may be written as (see 

Genest, 1987, Nelsen, 2006, pg 171): 

[ ] dt
e

tDD t
t

FF 1
1)( , )(141

0 −
=−−= ∫

=

θ

θ
θθ

θ
τ .  (25) 

The range of τ  is –1 < τ  < 1. Independence is attained in Frank’s copula as .0→θ  

The scatter plot for points from the Frank copula is provided in Figure (1e) for a value of 

75.0=τ , which translates to a θ value of 14.14. The points show very strong central dependence 

(even stronger than the Gaussian copula, as can be noted from the substantial central clustering) and 

very weak tail dependence (even weaker than the Gaussian copula, as can be noted from the fanning 

out at the tails). Thus, the Frank copula is suited for very strong central dependency with very weak 

tail dependency. The Frank copula has been used quite extensively in empirical applications (see 

Meester and MacKay, 1994; Micocci and Masala, 2003). 
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 2.3.3.4 The Joe copula 

The Joe copula, introduced by Joe (1993, 1997), has a generator function ])1(1ln[)( θϕ tt −−−= and 

takes the following copula form: 

[ ] . 1  ,)1()1()1()1(1),( /1
212121 ∞<≤−−−−+−−= θ

θθθθθ
θ uuuuuuC   (26) 

The Joe copula is similar to the Clayton copula. It cannot account for negative dependence. It attains 

the Fréchet upper bound as ∞→θ , but cannot achieve the Fréchet lower bound. The relationship 

between τ  and θ  for Joe’s copula does not have a closed form expression, but takes the following 

form: 

[ ] dt
t

ttDD
t

JJ 1

1

0

)1( )1ln()(),(41 −
=

−−
=+= ∫ θ

θθ

θθ
θ

τ .  (27) 

The range of τ  is between 0 and 1, and independence corresponds to .1=θ   

Figure (1f) presents the scatter plot for the Joe copula (with 75.0=τ ), which indicates that 

the Joe copula is similar to the Gumbel, but the right tail positive dependence is stronger (as can be 

observed from the tighter clustering of points in the right tail). In fact, from this standpoint, the Joe 

copula is closer to being the reverse of the Clayton copula than is the Gumbel.  

 

3. SAMPLE SELECTION MODEL USING COPULAS 

In the current paper, we introduce copula methods to accommodate residential self-selection in the 

context of assessing built environments effects on travel choices. To our knowledge, this is the first 

consideration and application of the copula approach in the urban planning and transportation 

literature (see Prieger, 2002 and Schmidt, 2003 for the application of copulas to sample selection in 

the Economics literature). 
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3.1 The Switching Regime Formulation 

Consider the following classic three equation switching regime system:  

*
11

*
1

*
00

*
0

***

]1[1   ,

]0[1  ,

,0 if  0    ,0 if  1     ,

qqqqqq

qqqqqq

qqqqqqq
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mrmzm

rrrrxr

==+′=
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≤=>=+′=

ξγ

ηα

εβ

   (28) 

The notation ]0[1 =qr represents an indicator function taking the value 1 if 0=qr  and 0 otherwise, 

while the notation ]1[1 =qr represents an indicator function taking the value 1 if 1=qr  and 0 

otherwise. The first selection equation represents a binary discrete decision of households to reside 

in a neo-urbanist built environment neighborhood or a conventional built environment 

neighborhood.  *
qr  in Equation (28) is the unobserved propensity to reside in a conventional 

neighborhood relative to a neo-urbanist neighborhood, which is a function of an (M x 1)-column 

vector qx  of household attributes (including a constant). β  represents a corresponding (M x 1)-

column vector of household attribute effects on the unobserved propensity to reside in a 

conventional neighborhood relative to a neo-urbanist neighborhood . In the usual structure of a 

binary choice model, the unobserved propensity *
qr  gets reflected in the actual observed choice 

qr ( qr = 1 if the qth household chooses to reside in a conventional neighborhood, and qr = 0 if the qth 

household decides to reside in a neo-urbanist neighborhood). qε  is a standard normal error tem 

capturing the effects of unobserved factors on the residential choice decision.  

The second and third equations of the system in Equation (28) represent the continuous 

outcome variables of log(vehicle miles of travel) in our empirical context. *
0qm  is a latent variable 

representing the logarithm of miles of travel if a random household q were to reside in a neo-urbanist 

neighborhood, and *
1qm  is the corresponding variable if the household q were to reside in a 
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conventional  neighborhood. These are related to vectors of household attributes qz  and qw , 

respectively, in the usual linear regression fashion, with qη  and qξ  being random error terms. Of 

course, we observe *
0qm  in the form of 0qm  only if household q in the sample is observed to live in a 

neo-urbanist neighborhood. Similarly, we observe *
1qm  in the form of 1qm  only if household q in the 

sample is observed to live in a conventional neighborhood.  

The potential dependence between the error pairs ),( qq ηε  and ),( qq ξε has to be expressly 

recognized in the above system, as discussed from an intuitive standpoint in Section 1.3.2 But, as in 

many other empirical applications, it is difficult to know a priori what the best structure is to 

characterize the dependence between the error pairs ),( qq ηε  and ),( qq ξε . Thus, it is appealing to 

empirically test different dependence (or copula) functions, and choose the one that best fits the data. 

On the other hand, almost all earlier sample selection studies have implicitly assumed the Gaussian 

copula, which is only one of several possibilities. It is only recently that Prieger (2002), Schmidt 

(2003; 2005) and Genius and Strazerra (2004) have considered other copulas, as we do here. In the 

next section, we discuss the maximum likelihood estimation approach for estimating the parameters 

with different copulas.  

 

3.2 Maximum Likelihood Estimation 

Let the univariate standardized marginal cumulative distribution functions of the error terms 

),,( qqq ξηε  be ),,,( ξηε FFF respectively. Assume that qη  has a scale parameter of ησ , and qξ  has a 

                                                 
2 The reader will note that it is not possible to identify any dependence parameters between (ηq, ξq) because the vehicle 
miles of travel is observed in only one of the two regimes for any given household. 
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scale parameter of ξσ . Also, let the standardized joint distribution of ),( qq ηε  be F(.,.), and let the 

standardized joint distribution of ),( qq ξε be G(.,.).  

Consider a random sample size of Q (q = 1, 2, …, Q) with observations on 

),,,,,( 10 qqqqqq wzxmmr . The switching regime model has the following likelihood function: 
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The conditional distributions in the expression above can be simplified. Specifically, we have the 

following: 
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where (.,.)
0θ

C is the copula corresponding to F with )(0
1 qq xFu βε ′−=  and ⎟
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Similarly, we can write: 
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where (.,.)
1θ

C is the copula corresponding to G with )(1
1 qq xFu βε ′−=  and ⎟
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Substituting these conditional probabilities back into Equation (29) provides the general likelihood 

function expression for any sample selection model: 
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Any copula function can be used to generate the bivariate dependence between ),( qq ηε  and 

),( qq ξε , and the copulas can be different for these two dependencies (i.e., 
0θ

C  and 
1θ

C  need not be 

the same). Thus, there is substantial flexibility in specifying the dependence structure, while still 

staying within the maximum likelihood framework and not needing any simulation machinery. In the 

current paper, we use normal distribution functions for the marginals (.)εF , (.)ηF  and (.)ξF , and test 

various different copulas for 
0θ

C  and 
1θ

C . In Table 2, we provide the expression for ),( 21
2

uuC
u θ∂
∂  

for the six copulas discussed in Section 2.3. For Archimedean copulas, the expression has the simple 

form provided in Equation (19). 

 The maximum-likelihood estimation of the sample selection model with different copulas 

leads to a case of non-nested models. An approach to select among the competing copula models is 

the Bayesian Information Criterion (or BIC; see Bhat, 1997 for an earlier application). The BIC for a 

given copula model is equal to )ln()ln(2 QKL +− , where )ln(L  is the log-likelihood value at 
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convergence, K is the number of parameters, and Q is the number of observations. The copula that 

results in the lowest BIC value is the preferred copula. But, if all the competing models have the 

same exogenous variables and a single copula dependence parameter θ, the BIC information 

selection procedure measure is equivalent to selection based on the largest value of the log-

likelihood function at convergence. 

 

3.3 Treatment Effects  

The observed data for each household in the switching model of Equation (28) is its chosen 

residence location and the VMT given the chosen residential location. That is, we observe if 0=qr  

or 1=qr  for each q, so that either 0qm  or 1qm  is observed for each q. We do not observe the data 

pair ),( 10 qq mm for any household q. However, using the switching model, we would like to assess 

the impact of the neighborhood on VMT.  In the social science terminology, we would like to 

evaluate the expected gains (i.e., VMT increase) from the receipt of treatment (i.e., residing in a 

conventional neighborhood). Heckman and Vytlacil, 2000 and Heckman et al., 2001 define a set of 

measures to study the influence of treatment, two important such measures being Average Treatment 

Effect (ATE) and the Effect of Treatment on the Treated (TT). We discuss these below, and propose 

two new measures labeled “Effect of Treatment on the Non-Treated (TNT)” and “Effect of 

Treatment on the Treated and Non-treated (TTNT)”. 

 The ATE measure provides the expected VMT increase for a random household if it were to 

reside in a conventional neighborhood as opposed to a neo-urbanist neighborhood.  The ATE is 

estimated as: 
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 Heckman and Vytlacil (2000) propose a “Treatment on the Treated” or TT measure that 

captures the expected VMT increase for a household randomly picked from the pool located in a 

conventional neighborhood if it were instead located in a neo-urbanist neighborhood (in social 

science parlance, it is the average impact of “treatment on the treated”; see Heckman and Vytlacil, 

2005). The TT measure can be estimated as follows: 
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where 1rQ is the number of households in the sample residing in conventional neighborhoods, and 

0
ˆ

qb and 1
ˆ

qb are defined as follows: 
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The expressions above do not have a closed form in the general copula case. However, when a 

Gaussian copula is used for both the switching regimes, the expressions simplify nicely (see Lee, 

1978). In the general copula case, the expressions (and the TT measure) can be computed using 

numerical integration techniques.  

 It is straightforward algebra to show that qq zb α ′= ˆˆ
0 if there is no dependency in the 

),( qq ηε terms, and qq wb γ ′= ˆˆ
1 if there is no dependency between the ),( qq ξε error terms. Thus, TT 

collapses to the ATE if the ATE were computed only across those households living in conventional 

neighborhoods (see the relationship between Equations (33) and (34) after letting qq zb α′= ˆˆ
0  and 
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qq wb γ ′= ˆˆ
1 in the latter equation). However, in the current empirical setting, it is also of interest to 

assess the expected VMT increase for a household randomly picked from the pool located in a neo-

urbanist neighborhood if it were instead located in a conventional neighborhood (i.e., the “average 

impact of treatment on the non-treated” or TNT). This may be computed as: 

( ) , )2/ˆˆexp()2/ˆˆexp()1(1TNT
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where 0rQ  is the number of households in the sample residing in neo-urbanist neighborhoods, and 

0
ˆ

qh and 1
ˆ

qh are defined as follows: 
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 Finally, we can combine the 
∧

TT  and 
∧

TNT  measures into a single measure that represents 

the average impact of treatment on the (currently) treated and (currently) non-treated (TTNT). In the 

current empirical context, it is the expected VMT change for a randomly picked household if it were 

relocated from its current neighborhood type to the other neighborhood type, measured in the 

common direction of change from a traditional neighborhood to a conventional neighborhood: 

⎟
⎠
⎞

⎜
⎝
⎛ +=

∧∧∧

TTTNT1TTNT 10 rr QQ
Q

  (38) 

The above measure, in effect, provides the average expected change in VMT if all households were 

located in a conventional neighborhood relative to if all households were located in a neo-urbanist 

neighborhood. The relationship between 
∧

TTNT  and ATE should be obvious. Essentially, 
∧

TTNT  
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includes both the “true” causal effect of neighborhood effects on VMT as well as the “self-selection” 

effect of households choosing neighborhoods based on their travel desires. The closer 
∧

TTNT  is to 

ATE, the lesser is the self-selection effect. Of course, in the limit that there is no self-selection, 

∧

TTNT  collapses to the ATE. 

 

4. THE DATA 

4.1 Data Sources 

The data used for this analysis is drawn from the 2000 San Francisco Bay Area Household Travel 

Survey (BATS) designed and administered by MORPACE International Inc. for the Bay Area 

Metropolitan Transportation Commission (MTC). This comprehensive activity-travel survey 

collected detailed socio-economic, demographic, and activity-travel data for a sample of about 

15000 households in the Bay Area.  The data included information about household vehicle usage 

and residential locations.   

 In addition to the 2000 BATS data, several other secondary data sources were used to derive 

spatial variables characterizing the activity-travel and built environment in the region. These 

included: (1) Zonal-level land-use/demographic coverage data, obtained from the MTC, (2) GIS 

layers of sports and fitness centers, parks and gardens, restaurants, recreational businesses, and 

shopping locations, obtained from the InfoUSA business directory, (3) GIS layers of bicycling 

facilities, obtained from MTC, and (4) GIS layers of the highway network  (interstate, national, state 

and county highways) and the local roadways network (local, neighborhood, and rural roads), 

extracted from the Census 2000 Tiger files. From these secondary data sources, a wide variety of 

built environment variables were developed for the purpose of classifying the residential 

neighborhoods into neo-urbanist and conventional neighborhoods. 
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4.2 The Dependent Variables  

This study uses factor analysis and a clustering technique to define a binary residential location 

variable that classifies the Traffic Analysis Zones (TAZs) of the Bay Area into neo-urbanist and 

conventional neighborhoods based on built environment measures. Factor analysis helps in reducing 

the correlated attributes (or factors) that characterize the built environment of a neighborhood into a 

manageable number of principal components (or variables). The clustering technique employs these 

principal components to classify zones into neo-urbanist or conventional neighborhoods. In the 

current paper, we employ the results from Pinjari et al. (2008) that identified two principal 

components to characterize the built environment of a zone - (1) Residential density and 

transportation/land-use environment, and (2) Accessibility to activity centers. The factors loading on 

the first component included bicycle lane density, number of zones accessible from the home zone 

by bicycle, street block density, household population density, and fraction of residential land use in 

the zone. The factors loading on the second component included bicycle lane density and number of 

physically active and natural recreation centers in the zone. The two principal components formed 

the basis for a cluster analysis that categorizes the 1099 zones in the Bay area into neo-urbanist or 

conventional neighborhoods. (see Pinjari et al., 2008 for complete details). This binary variable is 

used as the dependent variable in the selection equation of Equation (28).  

The continuous outcome dependent variable in each of the neo-urbanist and conventional 

neighborhood residential location regimes is the household vehicle miles of travel (VMT). This was 

obtained from the reported odometer readings before and after the two days of the survey for each 

vehicle in the household. The two-day vehicle-specific VMT was aggregated across all vehicles in 

the household to obtain a total two-day household VMT, which was subsequently averaged across 

the two survey days to obtain an average daily household VMT. The logarithm of the average daily 
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household VMT was then used as the dependent variable, after recoding households with a VMT 

value of zero to one (so that the logarithm of VMT takes a value of zero for these households).3  

The final estimation sample in our analysis includes 3696 households from 5 counties (San 

Francisco, San Mateo, Santa Clara, Alameda, and Contra Costa) of the Bay area. Among these 

households, about 34% of the households reside in neo-urbanist neighborhoods and 66% reside in 

conventional neighborhoods. The average daily household VMT is about 37 miles for households in 

neo-urbanist neighborhoods, and 68 miles for households in conventional neighborhoods.  

 

5. EMPIRICAL ANALYSIS 

5.1 Variables Considered 

Several categories of variables were considered in the analysis, including household demographics, 

employment characteristics, and neighborhood characteristics. Household demographics included 

the ethnicity, gender and age of the members of the household, presence of children in the 

household, household vehicle and bicycle ownership, household type (such as nuclear family, couple 

family, roommate household, etc.), number of full- and part-time students in the household, and 

household income. The employment characteristics included the number of employed individuals, 

their work flexibility, and commute travel time measures. The neighborhood characteristics 

considered are population density, employment density, Hansen-type accessibility measures (such as 

accessibility to employment and accessibility to shopping; see Bhat and Guo, 2007 for the precise 

functional form), population by ethnicity in the neighborhood, presence/number of schools and 

physically active centers, and density of bicycle lanes and street blocks. These measures are included 

                                                 
3 Note that there is a small share (<5%) of zero VMT households, almost all of whom are households with no motorized 
vehicles. 
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in the VMT outcome equation and capture the effect of variations in built environment across zones 

within each group of neo-urbanist and conventional neighborhoods. 

 

5.2 Estimation Results 

The empirical analysis involved estimating models with the same copula-based dependency structure 

for ),( qq ηε  and ),( qq ξε , as well as different copula-based dependency structures. This led to 6 

models with the same copula dependency structure (corresponding to the six copulas discussed in 

Section 2.3), and 24 models with different combinations of the six copula dependency structures for 

),( qq ηε  and ),( qq ξε .  We also estimated a model that assumed independence between qε  and qη , 

and qε  and qξ . 

 The Bayesian Information Criterion, which collapses to a comparison of the log-likelihood 

values across different models, is employed to determine the best copula dependency structure 

combination. The log-likelihood values for the five best copula dependency structure combinations 

are: (1) Frank-Frank (-6842.2), (2) Frank-Joe (-6844.2), (3) FGM-Joe (-6851.0), (4) Independent-Joe 

(-6863.7), and (5) FGM-Gumbel (-6866.2). It is evident that the log-likelihood at convergence of the 

Frank-Frank and Frank-Joe copula combinations are higher compared to the other copula 

combinations. Between the Frank-Frank and Frank-Joe copula combinations, the former is slightly 

better. The log-likelihood value for the structure that assumes independence (i.e., no self-selection 

effects) is -6878.1. All the five copula-based dependency models reject the independence 

assumption at any reasonable level of significance, based on likelihood ratio tests, indicating the 

significant presence of self-selection effects. Interestingly, however, the log-likelihood value at 

convergence for the classic textbook structure that assumes a Gaussian-Gaussian copula combination 

is -6877.9, indicating that there is no statistically significant difference between the Gaussian-
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Gaussian (G-G) and the independence-independence (I-I) copula structures. This is also observed in 

the estimated bivariate normal correlation parameters, which are -0.020 (t-statistic of 0.18) for the 

residential choice-neo-urbanist VMT regime error correlation and -0.050 (t-statistic of -0.50) for the 

residential choice-conventional neighborhood VMT regime error correlation. Clearly, the traditional 

G-G copula combination indicates the absence of self-selection effects.  However, this is simply an 

artifact of the normal dependency structure, and is indicative of the kind of incorrect results that can 

be obtained by placing restrictive distributional assumptions.  

 In the following presentation of the empirical results, we focus our attention on the results of 

the Independent-Independent (or I-I copula) specification that ignores self-selection effects entirely 

and the Frank-Frank (or F-F copula) specification that provides the best data fit. Table 3 provides the 

results, which are discussed in turn for each of the binary discrete choice component and the two 

continuous log(VMT) outcome components. 

 

5.2.1 Binary choice component 

The results of the binary discrete equation of neighborhood choice provide the effects of variables on 

the propensity to reside in a conventional neighborhood relative to a neo-urbanist neighborhood. The 

parameter estimates indicate that younger households (i.e., households whose heads are less than 35 

years of  age) are less likely to reside in conventional neighborhoods and more likely to reside in 

neo-urbanist neighborhoods, perhaps because of higher environmental sensitivity and/or higher need 

to be close to social and recreational activity opportunities (see also Lu and Pas, 1999). Households 

with children have a preference for conventional neighborhoods, potentially because of a perceived 

better quality of life and schooling for children in conventional neighborhoods compared to neo-

urbanist neighborhoods. Also, as expected, households who own their home and who live in a single 
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family dwelling unit are more likely to reside in conventional neighborhoods (see Pinjari et al., 2008 

for similar results).  

 

5.2.2 Log(VMT) continuous component for neo-urbanist neighborhood regime 

The estimation results corresponding to the natural logarithm of vehicle miles of travel (VMT) in a 

neo-urbanist neighborhood highlight the significance of the number of household vehicles and 

number of full-time students. As expected, both of these effects are positive. In particular, log(VMT) 

increases with number of vehicles in the household and number of students. The effect of number of 

vehicles is non-linear, with a jump in log(VMT) for an increase from no vehicles to one vehicle, and 

a lesser impact for an increase from one vehicle to 2 or more vehicles (there were only two 

households in neo-urbanist neighborhoods with 3 vehicles, so we are unable to estimate impacts of 

vehicle increases beyond 2 vehicles in neo-urbanist neighborhoods). Interestingly, we did not find 

any statistically significant effect of employment and neighborhood characteristics, in part because 

the variability of these characteristics across households in neo-urbanist zones is relatively small.  

The copula dependency parameter between the discrete choice residence error term and the 

log(VMT) error term for neo-urbanist households is highly statistically significant and negative for 

the F-F model. The θ estimate translates to a Kendall’s τ value of -0.26. The negative dependency 

parameter indicates that a household that has a higher inclination to locate in conventional 

neighborhoods would travel less than an observationally equivalent “random” household if both 

these households were located in a neo-urbanist neighborhood (a “random” household, as used 

above, is one that is indifferent between residing in a neo-urbanist or a conventional neighborhood, 

based on factors unobserved to the analyst). Equivalently, the implication is that a household that 

makes the choice to reside in a neo-urbanist neighborhood is likely to travel more than an 
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observationally equivalent random household in a neo-urbanist environment, and much more than if 

an observationally equivalent household from a conventional neighborhood were relocated to a neo-

urbanist neighborhood. This may be attributed to, among other things, such unobserved factors 

characterizing households inclined to reside in neo-urbanist settings as a higher degree of comfort 

level driving in dense, one-way street-oriented, parking-loaded, traffic conditions.  

The lower travel tendency of a random household in a neo-urbanist neighborhood (relative to 

a household that expressly chooses to locate in a neo-urbanist neighborhood) is teased out and 

reflected in the high statistically significant negative constant in the F-F copula model. On the other 

hand, the I-I model assumes, incorrectly, that the travel of households choosing to reside in neo-

urbanist neighborhoods is independent of the choice of residence. The result is an inflation of the 

VMT generated by a random household if located in a neo-urbanist setting.  

 

5.2.3 Log(VMT) continuous component for conventional neighborhood regime 

The household socio-demographics that influence vehicle mileage for households in a conventional 

neighborhood include number of household vehicles, number of full-time students, and number of 

employed individuals. As expected, the effects of all of these variables are positive. The household 

vehicle effect is non-linear, with the marginal increase in log(VMT) decreasing with the number of 

vehicles. In addition, two neighborhood characteristics – density of vehicle lanes and accessibility to 

shopping – have statistically significant effects on log(VMT) in the conventional neighborhood 

regime. Both these effects are negative, as expected.  

The dependency parameter in this segment for the F-F model is highly statistically significant 

and positive. The θ  estimate translates to a Kendall’s τ value of 0.36. The positive dependency 

indicates that a household that has a higher inclination to locate in conventional neighborhoods is 
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likely to travel more in that setting than an observationally equivalent random household.  Again, the 

I-I model ignores this residential self-selection in the estimation sample, resulting in an over-

estimation of the VMT generated by a random household if located in a conventional neighborhood 

setting (see the higher constant in the I-I model relative to the F-F model corresponding to the 

conventional neighborhood VMT regime).  

 

5.3 Treatment Effects 

It is clear from the previous section that there are statistically significant residential self-selection 

effects; that is, households’ choice of residence is linked to their VMT. To understand the magnitude 

of self-selection effects, we present point estimates of the treatment effects in this section. In 

addition to the point treatment effects (see Section 3.3 for the formulas), we also estimate large 

sample standard errors for the treatment effects using 1000 bootstrap draws. This involves drawing 

from the asymptotic distributions of parameters appearing in the treatment effect, and computing the 

standard deviation of the simulated treatment effect values. 

The results are presented in Table 4 for the Independence-Independence (I-I) model and the 

three copula models with the best data fit, corresponding to the FGM-Joe (FG-J), Frank-Joe (F-J), 

and the Frank -Frank (F-F) copula models.  Of course, the results from the traditional Gaussian-

Gaussian (G-G) model are literally identical to the results from the I-I model, since the correlation 

parameters in the G-G model are small and very insignificant. The results show substantial variation 

in the treatment measures across models, except for the F-J and F-F models which provide similar 

results (this is not surprising, since the model parameters and log-likelihood values at convergence 

for these two models are almost the same, as discussed earlier in Section 5.2). According to the I-I 

model, a randomly selected household will have about the same VMT regardless of whether it is 
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located in a conventional or neo-urbanist neighborhood (see the small and statistically insignificant 

ATE estimate for the I-I model). On the other hand, the other copula models indicate that there is 

indeed a statistically significant impact of the built environment on VMT. For instance, the best-

fitting F-F model indicates that a randomly picked household will drive about 21 vehicle-miles per 

day more if in a conventional neighborhood relative to a neo-urbanist neighborhood. The important 

message here is that ignoring sample selection can lead to an underestimation or an overestimation 

of built environment effects (the general impression is that ignoring sample selection can only lead 

to an overestimation of built environment effects). Further, one needs to empirically test alternative 

copulas to determine which structure provides the best data fit, rather than testing the presence or 

absence of sample selection using normal dependency structures.  

The results also show statistically significant variations in the other treatment effects between 

the I-I model and the non I-I models. The 
∧

TT  and 
∧

TNT  measures from the non I-I models reflect, 

as expected, that a household choosing to locate in a certain kind of neighborhood travels more in its 

chosen environment relative to an observationally equivalent random household. Thus, if a randomly 

picked household in a conventional neighborhood were to be relocated to a neo-urbanist 

neighborhood, the household’s VMT is estimated to decrease by about 42 miles. Similarly, if a 

randomly picked household in a neo-urbanist neighborhood were to be relocated to a conventional 

neighborhood, the household’s VMT is estimated to decrease by about 31 miles. On the other hand, 

if a randomly picked household that is indifferent to neighborhood type is moved from a 

conventional to a neo-urbanist neighborhood, the household’s VMT is estimated to decrease by 

about 21 miles (which is, of course, the ATE measure).  

The 
∧

TTNT  measure is a weighted average of the 
∧

TT  and 
∧

TNT  measures, and shows that 

there would be a decrease of about 25 vehicle miles of travel per day if all households in the 
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population (as represented by the estimation sample) were located in a neo-urbanist neighborhood 

rather than a conventional neighborhood. When compared to the average VMT of 58 miles, the 

implication is that one may expect a VMT reduction of about 43% by redesigning all neighborhoods 

to be of the neo-urbanist neighborhood type.4 Finally, the 
∧

TTNT  measure for the best F-F copula 

model shows that about 87% of the VMT difference between households residing in conventional 

and neo-urbanist neighborhoods is due to “true” built environment effects, while the remainder is 

due to residential self-selection effects. However, most importantly, it is critical to note that failure 

to accommodate the self-selection effect leads to a substantial underestimation of the “true” built 

environment effect (see the ATE for the I-I model of 0.49 miles relative to the ATE for the F-F 

model of 21.37 miles. 

  

6. CONCLUSIONS AND IMPLICATIONS 

Sample selection has been extensively studied and applied in the econometrics and related fields. 

The dominant approach to dealing with sample selection is to assume a bivariate normality 

assumption directly on the error terms, or on transformed error terms, in the discrete and continuous 

equations. Such an assumption can be restrictive and inappropriate, since the implication is a linear 

and symmetrical dependency structure between the error terms. There are two ways that one can 

relax this joint bivariate normal coupling. The first is to use semi-parametric or non-parametric 

approaches to characterize the relationship between the discrete and continuous error terms, and the 

second is to test alternative copula-based bivariate distributional assumptions to couple error terms 

                                                 
4 Note that we are simply presenting this figure as a way to provide a magnitude effect of VMT reduction by designing 
urban environments to be of the neo-urbanist kind. In practice, different neighborhoods may be redesigned to different 
extents to make them less auto-dependent. Further, in a democratic society, demand will (and should) fuel supply. Thus, 
as long as there are individuals who prefer to live in a conventional setting, there will be developers to provide that 
option. 
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with specified univariate marginal distributions. The first approach involves a relatively large 

number of parameters to estimate, is relatively very inefficient from an econometric estimation 

standpoint, typically does not allow the testing and inclusion of a rich set of explanatory variables 

with the usual range of sample sizes available in empirical contexts, and is difficult to implement. 

The second, copula-based, approach retains a parametric specification for the bivariate dependency, 

but allows testing of several parametric structures to characterize the bivariate dependency.  This 

copula approach allows the analyst to stay within the familiar maximum likelihood framework for 

estimation and inference, and does not entail any kind of numerical integration or simulation 

machinery. It is simple to implement, allows rich variable specifications, and is gaining attention in 

the econometric literature.  

 In the current study, we apply the copula based approach to model residential neighborhood 

choice and daily household vehicle miles of travel (VMT) using the 2000 San Francisco Bay Area 

Household Travel Survey (BATS). The self-selection hypothesis in the current empirical context is 

that households select their residence locations based on their travel needs, which implies that 

observed VMT differences between households residing in neo-urbanist and conventional 

neighborhoods cannot be attributed entirely to built environment variations between the two 

neighborhoods types. A variety of copula-based models are estimated, including the traditional 

Gaussian-Gaussian (G-G) copula model. The results indicate that using a bivariate normal 

dependency structure suggests the absence of residential self-selection effects. However, other 

copula structures reveal a high and statistically significant level of residential self-selection, 

highlighting the potentially inappropriate empirical inferences from using incorrect dependency 

structures. In the current empirical case, we find the Frank-Frank (F-F) copula dependency structure 

to be the best in terms of data fit based on the Bayesian Information Criterion.   
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 The examination of treatment effects provides very different implications from the traditional 

G-G copula model and the best F-F copula model.  The first model effectively indicates that there 

are no self-selection effects and little to no effects of built environment on vehicle miles of travel.  

The F-F copula model indicates that the differences between VMT among neo-urbanist and 

conventional households are both due to self-selection as well as due to “true” built environment 

effects. Specifically, self-selection effects are estimated to constitute about 17% of the VMT 

difference between neo-urbanist and conventional households, while “true” built environment effects 

constitute the remaining 83% of the VMT difference. 

In summary, this paper indicates the power of the copula approach to examine built 

environment effects on travel behavior, and to contribute to the debate on whether the empirically 

observed association between the built environment and travel behavior-related variables is a true 

reflection of underlying causality, or simply a spurious correlation attributable to the intervening 

relationship between the built environment and the characteristics of people who choose to live in 

particular built environments (or some combination of both these effects). The results of this study 

indicate that, in the empirical context of the current study, failure to accommodate residential self-

selection effects can lead to a substantial mis-estimation of the true built environment effects. As 

importantly, the study indicates that use of a traditional normal bivariate distribution to characterize 

the relationship in errors between residential choice and VMT can lead to very misleading 

implications about built environment effects. 
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                                     (1a)                                                                     (1b)                                                                    (1c)   
 

           
                                     (1d)                                                                     (1e)                                                                    (1f)   
Figure 1 Normal variate copula plots (1a) Gaussian Copula τ = 0.75, θ = 0.92; (1b) FGM Copula τ = 0.22, θ = 1.00; (1c) Clayton Copula τ = 
0.75, θ =6.00; (1d) Gumbel Copula τ = 0.75, θ = 4.00; (1e) Frank Copula τ = 0.75, θ = 14.14; (1f) Joe Copula τ = 0.75, θ = 6.79. 
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Table 1 Characteristics of Alternative Copula Structures 

Copula Dependence Structure 
Characteristics 

Archimedean 
Generation Function 
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Table 2 Expressions for ),( 21
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Table 3 Estimation Results of the Switching Regime Model 

Variables 
Independence-Independence 

Copula Frank-Frank Copula 

Parameter t-stat Parameter t-stat 
Propensity to choose conventional neighborhood relative to neo-
urbanist neighborhood     

Constant 0.201 4.15 0.275 5.72 
Age of householder < 35 years -0.131 -2.35 -0.143 -2.75 
Number of children (of age < 16 years) in the household 0.164 4.62 0.161 4.59 
Household lives in a single family dwelling unit 0.382 6.79 0.337 6.28 
Own household 0.597 10.37 0.497 8.81 
Log of vehicle miles of travel in a neo-urbanist neighborhood     
Constant -0.017 -0.16 -0.638 -5.48 
Household vehicle ownership     
      Household Vehicles = 1 2.617 21.50 2.744 24.26 
      Household Vehicles ≥ 2 3.525 25.44 3.518 27.40 
Number of full-time students in the household 0.183 2.13 0.112 1.41 
Copula dependency parameter (θ) -- -- -2.472 -6.98 
Scale parameter of the continuous component 1.301 40.62 1.348 34.31 
Log of vehicle miles of travel in a conventional neighborhood     
Constant  0.379 2.28 0.163 1.08 
Household vehicle ownership     
      Household Vehicles = 1 3.172 21.77 3.257 25.43 
      Household Vehicles = 2 3.705 25.32 3.854 29.92 
      Household Vehicles ≥ 3 3.931 25.92 4.102 30.41 
Number of employed individuals in the household 0.229 7.24 0.208 6.66 
Number of full-time students in the household 0.104 5.06 0.131 6.27 
Density of bicycle lanes -0.023 -3.08 -0.024 -3.24 
Accessibility to shopping (Hansen measure) -0.024 -7.34 -0.027 -8.19 
Copula dependency parameter (θ)  -- -- 3.604 7.22 
Scale parameter of the continuous component 0.891 75.78 0.920 63.59 
Log-likelihood at convergence -6878.1 -6842.2 
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Table 4 Estimates of Treatment Effects in Miles 
 

Copulas 
Independence-
Independence  
Copula (I-I) 

FGM-Joe Copula  
(FG-J) Frank-Joe Copula (F-J) Frank-Frank Copula 

(F-F) 

ATE
∧

 0.49 (1.75) 10.75  (1.03) 19.99  (4.42) 21.37 (5.21) 

TT
∧

 3.04 (1.49) 31.04  (3.30) 42.45  (7.46) 41.76 (8.16) 

TNT
∧

 -8.38 (1.38) -31.55 (10.06) -33.66 (10.82) -30.74 (9.55) 

TTNT
∧

 0.49 (1.75) 17.07  (0.88) 25.46  (3.03) 25.59 (4.75) 

 
 
 


