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This foreword is not part of this guideline but is 
included for information purposes only. 

FOREWORD 
The subject matter covered by this guideline was originally con- 
tained in ASHRAE Standard 41.5-75, Standard Measurement 
Guide: Engineering Analysis of Experimental Data SPC 41.5- 
75R was formed to revise this standad and a draft of ANSU 
ASHRAE Standard41.5-75R was submittedforpublic review in 
May 1984. Comments obtained during the public review sug- 
gested that the material contained in the standard was more 
appropriate as a guideline rather than a standard SPC 41.5- 
75R agreed and unanimously voted to publish the document as 
a guideline. This guideline was then approved by the Standards 
Committee on October 25, 1986; the Boani of Directors on 
December 12,1986; and by the American National Standah 
Institute on February 18,1987. The guideline was subsequently 
reaflrmed in 1990 and again in 1996. 

1. PURPOSE 
The purpose of this guideline is to provide guidelines for 
reporting uncertainty in results of experimental data 
obtained from the testing of heating, refrigerating, and air- 
conditioning equipment. 

2. SCOPE 
Appropriate terms are defined and recommended proce- 
dures are given for applying basic statistical methods to 
experimental data. 

3. DEFINITIONS AND TERMINOLOGY 

confidence level: probability that a stated interval will 
include the true mean. 
conficrence limits (used for multisample data) and uncer- 
tainty interval (used for single-sample data): that range of 
values that can be expected to include the true value with a 
stated probability. For example, a statement that the 90% 
confidence limit is 5 to 8 means that there is 90% probabil- 
ity that the interval between 5 and 8 will contain the true 
value. 
correlation coefJicient (coefficient of determination): a 
measure of the linear relationship between two quantitative 
variables. 
data: the information obtained by experimental means, 
assumed to be in numencal form; recorded values of the 
variables; readings. 
deviation: the difference between a single result and the 
mean of many results. 

mean deviation: the sum of the absolute values of 
the deviations divided by their number. 

residual standard deviation : the standard deviation 
compiled from the residuals from the fitted curve. 

standard deviation: the square root of the mean of 
the squares of the deviations. (Adjustment is necessary for 
a small number of measurements, see 6.4.2.) 
error: the difference between the true value of the quantity 
measured and the observed value. All experimental errors 
can be classified as one of two types: systematic (accu- 

racy) error or random (precision) error.’ See Example 1 in 
the appendix. 

fired error: same as systematic error. 
precision error: same as random error. 
rundom error: an error that causes readings to take 

random values on either side of some mean value. Measure- 
ments may be precise or imprecise depending on how well 
an instrument can reproduce subsequent readings of an 
unchanged input. 

systematic error: an error that persists and cannot be 
considered as due entirely to chance. Systematic error can be 
corrected through calibration. 

uncertaino: an estimated value for the error, i.e., 
what we think an error would be if we could and did measure 
it by calibration. Although uncertainty may be the result of 
both accuracy and precision errors, only precision error can 
be treated by statistical methods, and in this report, uncer- 
tainty will always be analyzed as a precision error. 
interval range: the range between the largest and smallest vd- 
ues. 
mean: the sum of measurement values divided by the number 
of measurements. It is considered the “best” approximation of 
the true value. 
population: a collection of items, representing the same quan- 
tity and connoting completeness; the entire group of items 
being studied whether they be instrument readings, test 
results, points on a curve, or parts from a factory production 
lot. 
propagation of uncertainty: the degree to which the uncer- 
tainties in the values of the parameters affect the uncertainty in 
the result. 
result: the value obtained by making corrections to or calcula- 
tions with the data. 
sample: a portion or limited number of items of a population; 
a set of values, experimentally obtained, that represents a sam- 
ple of all possible readings that could be taken. 

multisample: repeated measurement of a fixed quan- 
tity using altered test conditions, such as different observers 
or different instrumentation or both; experiments in which 
uncertainties are evaluated by sufficient repetition using 
enough observers and enough diverse instruments so that the 
reliability of the results can be ensured by the use of statis- 
tics. Merely taking repeated readings with the same proce- 
dure and equipment does not provide multisample results. 

single sample: a single reading or succession of read- 
ings taken at the same or different times but under identical 
conditions. Many experiments that appear to be multisample 
are actually, in part, single-sample experiments. if the same 
instrument is used for a set of observations, some error that is 
inherent in the instrument will be sampled only once, no matter 
how many times each reading is repeated. In single-sample 
experiments, the statement of uncertainty or reliability will be 
based in part on estimates of possible systematic errors based 
on judgment or experience, since statistics cannot be applied to 

I 

l“Accuracy” and “precision” are often used to distinguish between 
systematic and random errors. A measurement with small system- 
atic errors is said to have high accuracy. A measurement with small 
random errors is said to have high precision. 
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all of the errors. 
vuriable: the basic quantity observed. 
variance: the square of the standard deviation. 

4. GENERAL CONSIDERATIONS IN 
UNCERTAINTY ANALYSIS AND 
EXPERIMENTAL PLANNING 

4.1 All measurements or results should be given in three parts: 
Best value 
1 Confidence limits or uncertainty interval 
Specified probability 

Reporting of experimental data should first provide an esti- 
mate of the value of the dependent variable at a point and, 
coupled with this, an interval, based on a selected degree of 
confidence, within which the true value is expected to lie. 

4.2 Generalized Experimental Pnxedure 
4.2.1 Establish the quantities that must be measured 

(temperature, pressure, flow, etc.). 
4.2.2 Set up the formulas for calculation of the desired 

result. 
4.2.3 Decide the maximum uncertainty tolerable in the 

result. 
4.2.4 Select instrumentation. The calculation of uncer- 

tainty in the result requires knowledge of individual uncer- 
tainties. Therefore, proposed instrumentation would have to 
be known at this point. 

4.2.5 Estimate the uncertainty in a single measurement 
of each parameter. 

4.2.6 Calculate the uncertainty in the anticipated result 
before the experiments are conducted by properly combining 
the estimated uncertainties in the value of each parameter as 
described in Section 5.  An uncertainty analysis is performed 
on each measurement technique, taking into account the esti- 
mated uncertainties of the instruments that will actually be 
used. 

4.2.7 Identify as critical those measurements whose 
uncertainties must be reduced. Also determine the amounts of 
reduction required if the estimated uncertainty in the results is 
greater than the maximum allowed. Compare the different 
measurement techniques for the critical measurement on the 
basis of cost, availability of instrumentation, ease of data col- 
lection, and calculated uncertainty. Select the measurement 
technique that provides the best compromise between small 
uncertainty and high cost. 

4.2.8 Collect a few data points and make a preliminary 
analysis of these data. 

4.2.9 Modify the experimental apparatus or procedure, 
or both, based on the results of 4.2.8. 

4.2.10 Collect the expenmental data and analyze the 
results following procedures in Sections 4.3,5, and 6. 

4.2.11 Report results as specified in 4.1. 

4.3 General Considerations in Data Analysis 
Examine the data for consistency. If any data 

points appear inconsistent with physical reality (e.g., heat is 
added to a container of water and the measured temperature 

4.3.1 

drops), the related experimental procedure should be investi- 
gated for gross mistakes or miscalculations. 

4.3.2 Perform a statistical analysis of data where appro- 
priate (Section 6). Discard erroneous data if there is sound 
basis for rejection (see 6.5). 

4.3.3 Estimate the uncertainty in the results (Section 5). 

4.4 Uncertainties in multisample data are ireated in Section 6. 

4.5 Uncertainties in singie-sample daia are treated in Section 7. 

5. PROPAGATION OF UNCERTAINTIES 

5.1 In experiments, the measurements eventually must be used 
to calculate either the desired result or a variable to be used in 
such calculation. 

5.1.1 Uncertainties can be described either in absolute 
terms (i.e., 5 volts 10.5 volts, P = 83%) or in percentage terms 
(Le., 5 volts ?lo%, P = 83%). 

5.1.2 Generally, as described more precisely below, 
uncertain quantities that are to be added have their uncertain- 
ties expressed in absolute terms; uncertain quantities that are 
to be multiplied, divided, or exponentiated have their uncer- 
tainties expressed as percentages. 

5.2 Approximations 
5.2.1 Select the measurement or variable with the 

greatest percent uncertainty and assign this uncertainty to the 
result. This can be a simple and satisfactory procedure when 
the most uncertain measurement or variable has an uncer- 
tainty that is four or more times the next largest uncertainty. 
See Example 2 in the appendix. 

5.2.2 The uncertainty in the result could be obtained by 
combining all the uncertainties in the most detrimental way 
(i.e., by adding them). This method should be used where 
there are only a few measurements or variables and the uncer- 
tainties are small. See Example 2 in the appendix. 

5.3 With the above exception, the uncertainty in a result is 
not closely approximated by the sum of the absolute or per- 
centage uncertainties of the values of the parameters. This 
would imply high odds that the direction of all uncertainties 
might simultaneously be the same. Since the concept of 
uncertainty involves random deviation about a mean, some 
deviations would be positive while others would be negative. 
Therefore, a series of measurements with relatively large 
uncertainties could produce a result with an uncertainty not 
much larger than the uncertainty of the most uncertain mea- 
surement. Subsection 5.4 sets forth the technique whereby 
this result is achieved. 

5.4 Recommended Procedure 
5.4.1 The uncertainty in each measurement or variable 

is described by specifying the expected value for the variable 
followed by the absolute uncertainty followed by the confi- 
dence level. 

v = m i w; P percent 

2 ASHRAE Guideline 2-1986 (RA 96) 
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where 
v =  thevariable, 
m =  itsbestvalue, 
w = uncertainty, and 
P = confidence level. 

For example: pressure = 50.2 psia t 0.5; 95% states that the 
best value for the pressure is believed to be 50.2 psia with a 
95% probability that the true value lies within 2 0.5 psia of 
this value. 

5.4.2 Where instrument accuracy is stated in percent of 
full scale, the maximum expected absolute uncertainty of any 
reading is the product of the stated percent and the value of the 
highest scale reading. This absolute uncertainty must be 
applied either directly or as a percentage of the expected scale 
reading. 

Instrumental accuracies that are so stated are generally at 
a confidence level of 95%. These 95% values may be multi- 
plied by the following factors for other confidence levels: 

Confidence 
Level, % Factor 

50 0.34 
60 0.43 
70 0.53 
80 0.65 
90 0.84 
95 1 .o 

For Information: 
Areas of the normal 

curve at xlo 
0.67 
0.85 
1 .o4 
1.28 
1.64 
1.96 

5.4.3 The rule for combining uncertainties of the same 
confidence level for the mathematical operations of addition 
and subtraction of quantities is that the squares of the absolute 
value of the uncertainty for each independently measured 
quantity are added. The square root of their sum is taken (root 
mean square, or rms) and is expressed as a percent of the sum 
or difference of the quantities. 

The rule for combining Uncertainties for the arithmetical 
operations of multiplication, division, and exponentiation is 
that the uncertainty in the test result is the root mean square 
(rms) of the fractional uncertainty of each of the indepen- 
dently measured test variables. 

For purposes of illustration, assume measurements A and 
B of two independent variables are made and that an uncer- 
tainty o f f  a exists in the measurement of A and an uncertainty 
of ~b exists in the measurement of B. If w, represents the 
resultant uncertainty after various arithmetic operations on 
numbers that contain the uncertainties (in the units of the mea- 
surements), then: 

For addition, (A f a) + (B I b) 

wr = (a2 + b30.5 

w, = (a2 + b2)O.S 

For subtraction, (A * U) - (B I b) 

For multiplication, (A *a) (BI b) 

w, = [(dA)’ + (b/B)2]0.5 

(B * 6) + (A * a) For division, 
w, = B/A [ ( ~ A ) z  + (b/~)230.5 

5.4.4 In general, if the uncertainties in the indepen- 
dently measured variables are all given with the same confi- 
dence level, then the uncertainty in the result having this 
confidence level is 

where 
w, = [(dR/dVl w# + (drnV.2 w*)2 + . . . + (3R/dVn w,)2]0.’ 

R is a given function of the independent variables 
vl,v2, . . ., v, or 
R = R(v1, ~ 2 ,  .... VJ 

with w, the uncertainty in the result and wl, w2, . . . wn the 
uncertainties in the independently measured variables. See 
Examples 2 and 3 in the appendix. 

5.4.5 Particular notice should be given to the fact that 
the uncertainty propagation in the result depends on the 
squares of the uncertainties in the independent variables. This 
means that if the uncertainty in one variable is significantly 
larger than the uncertainties in the other variables, say by a 
factor of 5 or 10, then it is the largest uncertainty that predom- 
inates, and the other may probably be neglected. To illustrate, 
suppose there are three variables with an uncertainty of mag- 
nitude 1 and one variable with an uncertainty of magnitude 5.  
The uncertainty in the result would be 

(52 + l2 + 12+ 12)0.5 = a8 = 5.29 

The importance of these brief remarks conceming the relative 
magnitude of uncertainties is evident when one considers the 
design of an experiment, the procurement of instrumentation, 
etc. Very little is gained by trying to reduce the “small” uncer- 
tainties. Because of the square propagation, it is the “large” 
ones that predominate. Any improvement in the overall exper- 
imental result must be achieved by improving the instrumenta- 
tion or experimental technique connected with these relatively 
large uncertainties. 

5.4.6 Summary of Recommended Procedure 
5.4.6.1 Describe the uncertainty (w) in each variable (v). 

v = best (mean) value t w  
(with P percent [95% recommended] confidence) 
5.4.6.2 Compute the uncertainty in each result as 

2 
wy = J(aR/aq w, 1 + (aR/av2w2I2 + . * * + (aR/av,w,)2 

5.4.6.3 Report at least tw ,  at the chosen confidence 

5.4.6.4 The value of w, will be based on essentially the 
level. 

same confidence level as the uncertainties in the variables. 

6. TREATMENT OF MULTISAMPLE DATA 

6.1 General Considerations 
Statistical techniques provide methods for dealing economi- 
cally with a representative sample of a large number of items. 
For example, the degree of precision of a mean of observed 
values or of plotted results can always be improved by 
increasing the number of observations or test points. However, 
the same improvement in precision can be made at much less 
cost, in many cases, by statistical design of the experiment 
with fewer data points. Again, a statistical analysis of test 
results based on a proper design may give the same informa- 
tion with a few tests that could otherwise be obtained only by 
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a large number of tests of conventional type, if there are two or 
more variables that influence the process. 

For the majority of engineering cases, it is impractical 
and too costly to perform a true multisample experiment. 
However, repeated measurements with the same insüumenta- 
tion and the same observer may provide a fair approximation 
of a multisample experiment. Therefore, the following rec- 
ommended procedures are based strictly on sample size: 

More than 20: 
2 to 20: 
1: 

Multisample, Subsection 6.3 procedure 
Small Sample, Subsection 6.4 procedure 
Single Sample, Section 7.0 procedure 

When a number of observations are experimentally 
obtained, the data values are dispersed or scattered about the 
mean. The worthiness of data of this sort may be evaluated 
through application of certain statistical rules. The distribu- 
tion of the values in the sample, or in the entire population, 
may be compared with some expected probability distribu- 
tion. One interpretation of probability is linked to the fre- 
quency with which a certain phenomenon occurs after a large 
number of tries. There are several recognized curves for prob- 
ability distribution, but of the most use here is the normal 
error distribution, also called the normal frequency or Gauss- 
ian probability curve. 

While the Gaussian distribution does not fit all experimen- 
tal data sets, it is generally assumed for the following reasons: 

least squares estimators are “best” for Gaussian data, 
and they are easy to compute; 

the theory behind classical statistical tests (F-tests, t-tests, 
etc.) requires the assumption of a Gaussian distribution; 

such classical tests have precise levels only for Gauss- 
ian data; and 

most of these tests are fairly good even with respect to 
“stretched-tailed” data. 

6.2 The Gaussian or N o d  Distribution 
6.2.1 When data abide by Gaussian or normal distribu- 

tion rules, plus or minus errors are equally probable, and small 
errors are more probable than large errors. However, there is 
no real limit to the magnitude of large errors. The equation for 
such a distribution, assuming an infinite population, may be 
written as follows: 

where 
x = dependent variable or output reading; 
yx =the frequency of occurrence of the reading, x,  or the 

m = the mean value of the population; and 
h = a  constant inversely proportional to the standard devia- 

tion of the population (h = i/& ). 

Figure 1 is a plot of this function for two different values of h. 
It is seen that the distribution represented by the dashed curve 
indicates a greater number of small errors and a correspond- 
ingly smaller number of large errors. Data represented by the 
dashed curve are said to be more precise than those repre- 
sented by the solid curve. The curves are bell-shaped, and 

probability of its occurrence; 

Ts 

DEVIATION FROM TRUE MEAN 

Figure 1 N o r d  distribution curve. 

three common measures of central tendency (the mean, the 
mode, and the median) all coincide. The mode is the value that 
occurs most frequently, and the median is the middle value. 

6.2.2 One may ask how it is known that the assumptions 
pertaining to the derivation of the normal error distribution 
apply to experimental data. Actually, normality is a condition 
that, rigorously, may never occur. For example, consider 
repeated readings with a pressure gauge at 4 psig. if the stan- 
dard deviation of the instrument is 2 psi, then there is a small 
but finite probability that this gauge will indicate 10 psi (+30). 
However, there is no possibility for the gauge to indicate -2 psi 
(-30) because of the pin that stops the indicator dial at O psig. 
Therefore, this instrument, or any instrument with a zero or 
maximum point, cannot deviate in a perfectly nonhal manner. 
Nevertheless, the normal distribution is a good approximation 
to the deviation patterns of many instruments. 

Although experimental data may approximate the normal 
distribution, they seldom, if ever, fit the bell-shaped curve 
exactly. Goodness of fit, therefore, becomes a legitimate ques- 
tion, and various methods have been devised to evaluate this 
factor. The simplest method is to plot the data on probability 
paper on which a normal distribution plots as a straight line that 
passes through the point (O, 50) (Figure 2). Also shown in Figure 
2 are two types of skewed curves and two types of flat curves. 
Skewed curves have a different slope on either side of the max- 
imum point, while flatness refers to curves that peak either too 
sharply or too bluntly. Now, the question arises as to how 
straight and how close to the (O, 50) point one should pass if the 
distribution is to be considered normal. Usually, considerable 
flatness can be accepted without much concern. However, an 
imprecise instrument that has a badly skewed distribution has 
very likely malfunctioned and should either be repaired or dis- 
carded. Thus, as a matter of experimental verification, the Gaus- 
sian distribution is believed to represent the dismbution of 
random errors in an adequate manner for a properly controlled 
experiment. See Example 4 in the appendix. 

6.2.3 Best Value at a Given Input. When an output x 
is measured many times at a given input, the mean value of x 
is simply 

- 1 ”  X I  +x2 +x3 + . . . + X n  x = - xi= 
ni=] n 

where 
xi = the value of the ith observation, 
n = the number of observations in the sample. 
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DEVIATION FROM TRUE VALUE -D 

Figure 2 Normal and other distributions on probability 
coordinates. 

This arithmetic average is the best representation of the 
given set of xi's. Note that when the estimated best value of 
is taken as 2, the sum of the squares of the deviation of the data 
from their estimate is a minimum. (This is essentially the least 
squares principle.) However, while i represents an unbiased 
estimate of the true arithmetic mean of all possible values of 
x ,  there is no assurance that i is the true value. Good agree- 
ment (i.e., high precision) in replication does not imply that ; 
is close to the true value (Le., high accuracy). Nevertheless, 
from any viewpoint, the best estimate of the value of an 
unknown parameter at a given input is the average of the 
available measurements. 

6.2.4 Deviation. The deviation, d, for each reading is 
defined by: 

The average of the deviations of all the readings is zero since 

6.2.5 Mean Deviation. The average of the absolute 
values of the deviations, the mean deviation, is given by 

Note that the numerical values of the deviations are added 
without regard to algebraic sign, and that this quantity is not 
zero unless all the individual deviations are zero. 

As stated previously, the actual value by which a result is 
in error is never known. There are, however, various ways of 
estimating error. Mean deviation (also known as probable 
error) is one. This quantity is not, however, the most popularly 
used error estimate. 

6.2.6 Standard Deviation. The standard deviation (o) 
is defined for very large n by 

0.5 2 

o =  [ ; i i l (x; - iq  = n 

ASHRAE Guideline 2-1986 (RA 96) 

For small n, say less than 20, the division is by n-1 rather than 
n, and the symbol 0' is used to indicate an estimate of sigma. 
The standard deviation is probably the most widely used indi- 
cator of the precision error of an insîrument system. For a nor- 
mal distribution, the standard deviation has the following 
meanings: 

68.3% of the data will be within 2 lo of the mean 
95.5% of the data will be within 2 20 of the mean 
99.7% of the data will be within 2 30 of the mean 

The standard deviation indicates the degree of dispersion 
of the values about the mean. Figure 3 is a graphical statement 
of the deviation of all values from the mean or arithmetical 
average. The area under the curve, if measured symmetrically 
on both sides of the mean or zero-deviation value, can be 
interpreted to represent the percentage of items (or observa- 
tions or quantities) failing within the limits shown by the 
abscissas or the probability that the original values will fall 
within these limits. 

When the deviations from the mean value are examined 
and the average deviation and standard (ms) deviation 0 are 
known, the usefulness of this distribution curve becomes 
apparent. This is because of certain conventional practices 
and available tables. For example, 68.3% of all readings 
should lie within *o of the average, and 99.7% should lie 
within 130, where 0 is the standard deviation or rms error. 

Other arbitrary percentile selections could have been 
made and the results obtained with the aid of Table 1. Some 
statisticians give the 50% 90%, and 99% values. One-half of 
the values lie outside of 20.6750, and the deviation at this 
point is called the probable rms error. 

6.2.7 A very important question has not yet been 
answered: How good (or precise) is the arithmetic mean value 
that is taken as the best estimate of the true value of a set of 
readings? 

The question may be reworded, "Is it not possible to 
obtain more than one sample of a given population?' If this is 
so, should one not expect that each sample would yield a 
slightly different average or mean? 

Figure 3 Normal probability curve of deviation or error 
in terms of standard deviation CT. 
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To obtain an experimental answer to this question, it 
would be necessary to repeat the set of measurements and find 
a new arithmetic mean. In general, this new arithmetic mean 
would differ from the previous value, and the problem would 
remain unresolved until a large number of sets of data were 
collected. It would then be known how well the mean of a sin- 
gle set approximated the mean that would be obtained with a 
large number of sets. The mean value of a large number of sets 
is presumably the true value. Consequently, the standard devi- 
ation of the mean of a single set of data from this true value is 
desired. The result is 

a = 0 t h  

where 
0 = standard-deviation-of-the-mean value, 
o = standard deviation of the set of measurements, and 
n = number of measurements in the set. 

Thus, we can state with 99.7% confidence that the true value will 
not differ by more than 130 from the mean of the sample, etc. 

6.3 Recommended Procedure for Muitisample (More 
Than u)) Data with N o d  Distribution Assumed. See 
Examples 5 and 6 in the appendix. 

6.3.1 Best Value. The best value of a parameter is the 
mean value or a least squares adjusted value. 

6.3.2 Confidence Limits. Having decided on the best 
available value of x ,  its worth as an estimate of the true value 
of x must be determined by constructing the limits of the con- 
fidence interval. The recommended method is to take the 
unbiased estimate of the parameter as given by the mean of 
the readings and say that the population lies within IZ stan- 
dard deviations from the observed mean. 

The formula for the confidence limits is: 

Confidence Limits = if (z0tJn) 

where 
n = the sample size or the number of readings taken, 

o = the standard deviation of the population. 
= the average of the readings, and 

For example, if we let Z = 2, there is a 95.5% probability that 
the correct value lies in the interval between i- (20lA) and 

It should be noted that Z is equivalent to Student’s “t” 
(defined in 6.4.3) for infinite degrees of freedom (or number 
of data points). It will be more correct to use Student’s “t” 

i + (20 /&)  * 

value for 2 when there are a reasonably small number of data 
points. 

6.4 Method of Estimating Confidence in Smaü Sample 
Size (2 to u)). See Examples 7 and 10 in the appendix. 

6.4.1 Mean Value. In many circumstances the engineer 
will not be able to collect as many data points as might be 
desired, and only an approximation to the Gaussian distribu- 
tion will be obtained. Generally, it is necessary to have a min- 
imum of 20 measurements (100 is preferable) in order to 
obtain reliable estimates of standard deviation and general 
validity of the data For small sets of data, a mean value is 
computed as before: 

- #  1 
=i c xi 
n;= 1 

Note that a prime designation has been added, with i‘ referred 
to as the estimated mean of the population. Because of the 
small number of readings, the estimated mean usually will not 
be exactly equal to the true mean or correct value of the mea- 
sured variable. 

6.4.2 Standard Deviation. The following relation is 
then used as the best estimate for the standard deviation: 

Note that the factor n-1 is used in the denominator instead of 
n in an attempt to compensate for using the estimated mean 
instead of the true mean; however, some bias always remains, 
and d, the obtainable, does not equal o, the desired. 

6.4.3 “Student” t-Distribution. Recognizing this defi- 
ciency, a method was developed by W.S. Gosset (writing 
under the pseudonym “Student”) in 1907 by which confi- 
dence limits could be based on the standard deviation o of the 
small sample. He introduced the “Student” t-distribution, 
which has been tabulated as a constant depending on degrees 
of freedom and on the desired degree of confidence. (See 
Table 2.) Degrees of freedom can be defined in general as the 
number of observations minus the number of different quan- 
tities estimated. In 10 readings of a single variable, such as 
temperature or pressure, the number of degrees of freedom 
equals 9. In 10 values for the area of a rectangle, the number 
of degrees of freedom equals 8, since there are two quantities, 
length and width, whose values determine the value of A. 

On the basis of the r-distribution, a confidence interval 
for the mean value of x is: 

TABLE 1 Summary of Error Estimates Based on Normal Distribution 

Probability That a Single 
Value Wiü Be Greater Name of Error Symbol Value in Terms of 0 Percent Certainty 

Probable error (also mean deviation) EP 0.67450 50 1 in2 
Standard Deviation 
90% error 

o 0 

E90 1.64490 
68.3 
90 

1 in 3 (approx.) 
1 in 10 

%o sigma error 20 20 95 1 in 20 
Three sigma error 30 30 99.7 1 in 370 

1 
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F, Degrees of Freedom 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

30 
40 
60 
120 
00 

TABLE 2 Student’s f-Values 

P, Probabiuty of Obtaining a Given Value oft or a Larger One (Two-sided) 
0.50 0.20 0.10 0.05 0.02 0.01 0.001 0.0005 
1 .O00 3.078 6.314 12.706 31.821 63.657 318.310 636.620 
0.817 
0.765 
0.741 
0.727 
0.718 
0.71 1 
0.706 
0.703 

0.700 
0.697 
0.695 
0.694 
0.692 
0.69 1 
0.690 
0.689 
0.688 
0.688 

0.687 
0.686 
0.686 
0.685 
0.685 
0.684 
0.684 
0.684 
0.683 
0.683 

0.683 
0.681 
0.679 
0.677 
0.674 

1.886 
1.638 
1.533 
1.476 
1.440 
1.41 5 
1.397 
1.383 

1.372 
1.363 
1.356 
1.350 
1.345 
1.341 
1.337 
1.333 
1.330 
1.328 

1.325 
1.323 
1.321 
1.319 
1.318 
1.316 
1.315 
1.314 
1.313 
1.311 

1.310 
1.303 
1.296 
1.289 
1.282 

2.920 
2.353 
2.132 
2.015 
1.943 
1.895 
1.860 
1.833 

1.813 
1.796 
1.782 
1.77 1 
1.761 
1.753 
1.746 
,740 
,734 
.729 

.725 

.721 
1.717 
1.714 
1.711 
1.708 
1.706 
1.703 
1.701 
1.699 

1.697 
1.684 
1.671 
1.656 
1.645 

4.303 
3.183 
2.776 
2.57 1 

2.447 
2.365 
2.306 
2.262 

2.228 
2.201 
2.179 
2.160 
2.145 
2.132 
2.120 
2.1 10 
2.101 
2.093 

2.086 
2.080 
2.074 
2.069 
2.064 
2.060 
2.056 
2.052 
2.048 
2.045 

2.042 
2.021 
2.000 
1.980 
1.960 

6.965 
4.541 
3.747 
3.365 
3.143 
2.998 
2.896 
2.821 

2.764 
2.718 
2.681 
2.650 
2.624 
2.602 
2.583 
2.567 
2.552 
2.539 

2.528 
2.518 
2.508 
2.500 
2.492 
2.485 
2.479 
2.473 
2.467 
2.462 

2.457 
2.423 
2.390 
2.358 
2.326 

9.925 
5.841 
4.604 
4.032 
3.707 
3.500 
3.355 
3.250 

3.169 
3.106 
3.055 
3.012 
2.977 
2.947 
2.921 
2.898 
2.878 
2.861 

2.845 
2.83 1 
2.819 
2.807 
2.797 
2.787 
2.779 
2.77 1 
2.763 
2.756 

2.750 
2.705 
2.660 
2.617 
2.576 

22.326 
10.213 
7.173 
5.893 
5.208 
4.785 
4.501 
4.297 

4.144 
4.025 
3.930 
3.852 
3.787 
3.733 
3.686 
3.646 
3.610 
3.579 

3.552 
3.527 
3.505 
3.485 
3.467 
3.450 
3.435 
3.42 1 
3.408 
3.396 

3.385 
3.307 
3.232 
3.160 
3.090 

31.598 
12.924 
8.610 
6.869 
5.959 
5.408 
5.041 
4.78 1 

4.587 
4.437 
4.318 
4.221 
4.140 
4.073 
4.015 
3.965 
3.922 
3.883 

3.850 
3.819 
3.792 
3.767 
3.745 
3.725 
3.707 
3.690 
3.674 
3.659 

3.646 
3.551 
3.460 
3.373 
3.291 

The estimated mean and estimated standard deviation are 
computed from the equations in 6.4.1 and 6.4.2, and n is the 
total number of readings of the sample. The value o f t  is tab- 
ulated in Table 2 as a function of the degrees of freedom and 
the desired degree of confidence. For repeated readings of a 
given input, the degrees of freedom equals n-1 since only 
one constant, , is estimated from the data. Note that as the -, 

number of readings increases, the interval becomes tighter 
around the estimated mean (by virtue of the factor il& and 
of the value of f), indicating a higher degree of confidence 
about the true value. 

6.5 Chauvenet’s Criterion for Rejecting Data Points. See 
Example 7 in the appendix. 

6.5.1 It is a rare circumstance when no data points 
appear out of place in comparison with the bulk of the data. 
Therefore, one must decide if these points that appear to be 
out of place are the result of some gross experimental blunder 
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and hence can be neglected or if they represent some new type 
of physical phenomenon that is peculiar to a certain operating 
condition. The engineer cannot just dismiss points that do not 
fit his expectations; he must have some consistent basis for 
elimination. 

One such test is known as Chauvenet’s criterion. It provides 
a consistent method of discarding dubious data points. Other cri- 
teria for rejecting suspicious data points are reported by  KU.^ 

6.5.2 According to Chauvenet’s criterion, a reading may be 
rejected if the probabiiity of obtaining that particular deviation h m  
the mean is less than 0.5n. To apply the criterion, a trial mean and 
mai standard deviation are computed, using all data points. ïhen the 
deviations of the individuai points are divided by the triai standard 
deviation and compared with the values given in Table 3. All points 
whose ratio of deviation to trial standard deviation is higher than that 
given in Table 3 are rejected, and a new mean and standad deviation 
are then computed with the rejected points elimlliated. 

TABLE 3 Chauvenet’s Criterion 
for Rejecting a Reading 

Ratio of Maximum Acceptable 
Deviation to Standard Number of Readings, 

n 

2 1.15 
3 1.38 
4 1.54 
5 1.65 
6 1.73 
7 1.80 
10 1.96 
15 2.13 
25 2.33 
50 2.51 
100 2.81 
300 3.14 
500 3.29 

1 .o00 3.48 

Deviation, d m l o  

6.5.3 Chauvenet’s criterion may not be applied a sec- 
ond time to the data set from which points have already been 
rejected. 

6.6 Staíisíicai Tes6 of a Given Hypothesis 
6.6.1 Engineers are frequently required to determine 

whether the difference between two sets of data is real and 
significant or if it is due to chance errors. Stated differently, 
they must determine what the probability is that the two sets 
of data are drawn from different populations. 

Tho important statistical tests may be used to answer this 
question. The t-test is used for small-sample, continuous data 
(such as temperature, pressure, voltage, etc.) that give a 
smooth and continuous distribution curve. The Chi-squared 
test, on the other hand, is designed for frequency or count type 
of data where the information is in the form of distinct inte- 
gers (such as number of failures per lot, number of errors per 
group, etc.). 

6.6.2 &Test (For Fewer Than 20 Data Points). See 
Example 8 in the appendix. 

In using the r-test, we first compare the r-value: 

where 

i’ = the estimated mean 
2 = the true mean or assumed mean 
o‘ = O‘/& = estimated standard deviation of the mean, 

derived from pooled data. 

Table 2 gives values of r for various degrees of freedom. The 
probability level is the chance of getting a r-value larger than 
the table values by chance alone. 

In general, the following statements can be made regard- 
ing the probability levels for evaluating hypotheses: 

(a). For probability levels of lo%, 20% or 30%, a 
hypothesis is reasonable (not proved, however). 

(b). A 5% probability level raises doubts as to the 
validity of the hypothesis. 

(c). For probability levels less than 1%, a hypothesis 
can be rejected with confidence. 

6.6.3 Chi-Squared Test (Use for 20 or More Data 
Points). See Example 9 in the appendix. 

In general, the chi-squared test tells us whether an 
observed count differs significantly from an expected count. 
Chi-squared is defined as 

- 

x2 = io-  E I ~ / E  

where 
O = observed count, 
E = expected count. 

Table 4 gives chi-squared values for various probability levels 
and degrees of freedom. Application of the chi-squared test is 
similar to that of the t-test. 

7. TREATMENT OF SINGLE-SAMPLE DATA 
See Example 3 in Appendix B. 

7.1 When the available data are single-sample, the statistical 
methods of Section 6 are not directly applicable. 

7.2 Based on the analysis of Kline and McClintock,’ a single- 
sample result should be expressed in terms of a mean value and 
an uncertainty interval based on a stated confidence level. This 
result may be written as follows: 

Y = Y, * w, (b percent) 

where 
vm = the measured value; 
w = the uncertainty, computed according to 5.4.4; and 
b =  the probability that the true value lies within the stated 

This approach is of particular value in setting up an experi- 
ment, especially if the test is expensive in terms of manpower, 
time, or equipment. It provides a basis for establishing prede- 
termined estimates of the reliability of results through a study 
of propagation of uncertainties. 

range, based on the opinion of the experimenter. 
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8. DATA PLOTTING AND CURVE FITTING 

8.1 
8.1.1 To increase physical insight into the meaning of 

empirical results or to present them in a coherent manner, it is 
customary to plot the data on a graph and to fit a curve to the 
data by the method of least squares. In order to quantify the 
scatter of the data and to determine whether any trends exist, 
it is necessary to obtain a measure of the systematic and ran- 
dom errors that may have been associated with the measure- 
ment aspects of the experiment. For the systematic error, the 
physics of the experiment or instrumentation, or both, must be 
understood for a complete correction or explanation. Statis- 
tics can only suggest that such an error may exist but not why. 
The random error, which by definition cannot be explained, is 

Fitting Linear Equatidns by Least Squares 

properly quantified, for two variables known to be interde- 
pendent, by the standard error of estimate. 

Figure 4 illustrates a set of data plotted in sequence where 
the two statistical parameters, mean and standard deviation, 
as defined in Section 6, are shown. The standard deviation, or 
is a measure of the scatter about the mean, y .  When the mean 
value, y ,  for instance, is calculated, in effect a constant has 
been fitted to the n data points by the method of least squares. 
That is, a value h has been selected for the mean m such that 

n 
2 n 2  

n y i - m ,  = Edi  
1 1 

1 -  

is a minimum. The solution is m = y and the deviations di = yi 
- m  = y i - y  are the residuals. The prediction of a value of y 
that is not one of the data points would then be expressed as y 
= M + E where y is the desired value, m the limiting mean 

F, 
Degrees 

of 
Freedom 
1 
2 
3 

4 
5 

6 
7 

8 
9 
10 
11 
12 
13 
14 

15 
16 

17 

18 
19 
20 
21 

22 

23 

24 

25 

26 

27 

28 

29 
30 

TABLE 4 Chi-Squared Values 

P, Probability of Obtaining a Given Value of Chi-Squared (or a larger one) 

0.995 0.990 0.975 0.950 0.900 0.750 0500 0.250 0.100 0.050 0.025 0.010 0.001 
i.04393 0.03157 0.03982 0.d393 0.0158 0.102 0.455 2.671 3.84 5.02 6.63 7.88 
D.0100 
D.Wl7 
0.207 
0.412 

0.676 
0.989 
1.34 
1.73 

2.16 
2.60 

3.07 
3.57 
4.07 

4.60 
5.14 

5.70 
6.26 

6.84 
7.43 

8.03 
8.64 

9.26 
9.89 

10.5 

11.2 
11.8 

12.5 

13.1 

0.0201 
0.115 

0.297 
0.554 

0.872 
1.24 
1.65 

2.09 
2.56 

3.05 
3.57 
4.1 1 

4.66 
5.23 

5.81 
6.41 
7.01 

7.63 
8.26 

8.90 

9.54 
10.2 

10.9 

11.5 
12.2 

12.9 

13.6 
14.3 

13.8 15.0 

0.0506 
0.216 

0.484 
0.83 1 

1.24 
1.69 
2.18 
2.70 

3.25 
3.82 
4.40 
5.01 
5.63 
6.26 

6.91 
7.56 

8.23 
8.91 

9.59 
10.3 

11.0 

11.7 
12.4 

13.1 

13.8 
14.6 

15.3 
16.0 

16.8 

O. 103 

0.352 
0.71 1 
1.15 

1.64 
2.17 
2.73 
3.33 

3.94 
4.57 

5.23 
5.89 
6.57 

7.26 
7.96 
8.67 
9.39 

10.1 
10.9 

11.6 

12.3 

13.1 

13.8 
14.6 

15.4 
16.2 

16.9 

17.7 
18.5 

0.21 1 

0.584 

1 .06 
1.61 

2.20 
2.83 
3.49 
4.17 

4.87 
5.58 
6.30 
7.04 
7.79 
8.55 

9.3 1 
10.1 

10.9 
11.7 
12.4 

13.2 

14.0 
14.8 

15.7 

16.5 

17.3 

18.1 

18.9 
19.8 

20.6 

0.575 

1.21 
1.92 
2.67 

3.45 
4.25 

5.07 
5.90 

6.74 
7.58 
8.44 

9.30 
10.2 

11.0 
11.9 
12.8 

13.7 
14.6 

15.5 
16.3 

17.2 

18.1 

19.0 

19.9 

20.8 
21.7 

22.7 
23.6 

24.5 

1.39 
2.37 
3.36 
4.35 
5.35 

6.35 
7.34 
8.34 

9.34 
10.3 
11.3 
12.3 
13.3 

14.3 
15.3 
16.3 

17.3 

18.3 
19.3 

20.3 

21.3 
22.3 

23.3 

24.3 

25.3 

26.3 

27.3 
28.3 
29.3 

1.32- 
2.77 
4.1 1 

5.39 
6.63 

7.84 
9.04 

10.2 
11.4 

12.5 
13.7 
14.8 

16.0 
17.1 
18.2 

19.4 
20.5 

21.6 

22.7 
23.8 

24.9 

26.0 
27.1 

28.2 

29.3 

30.4 
31.5 

32.6 
33.7 

34.8 

4.61 

6.25 
7.78 
9.24 

10.6 

12.0 
13.4 
14.7 

16.0 
17.3 

18.5 
19.8 
21.2 

22.3 
23.5 
24.8 
26.0 

27.2 
28.4 

29.6 

30.8 
32.0 

33.2 
34.4 

35.6 

36.7 

37.9 
39.1 

40.3 

5.99 
7.81 
9.49 
11.1 
12.6 

14.1 
15.5 

16.9 
18.3 
19.7 

21.0 
22.4 
23.7 
25.0 

26.3 
27.6 

28.9 
30.1 
31.4 

32.7 

33.9 
35.2 

36.4 

37.7 

38.9 
40.1 

41.3 
42.6 

43.8 

7.38 

9.35 
11.1 
12.8 

14.4 
16.0 

17.5 
19.0 

20.5 
21.9 
23.3 

24.7 
26.1 

27.5 
28.8 
30.2 

31.5 

32.9 
34.2 

35.5 

36.8 
38.1 

39.4 

40.6 

41.9 
43.2 

44.5 
45.7 

47.0 

9.21 

11.3 
13.3 
15.1 

16.8 

18.5 
20.1 

21.7 
23.2 
24.7 

26.2 
27.7 
29.1 
30.6 

32.0 
33.4 

34.8 
36.2 
37.6 

38.9 

40.3 
41.6 

43.0 

44.3 

45.6 

47.0 

48.3 
49.6 

50.9 

10.6 
12.8 

14.9 
16.7 

18.5 
20.3 

22.0 
23.6 
25.2 
26.8 

28.3 
29.8 
31.3 
32.8 

34.3 
35.7 

37.2 

38.6 
40.0 
41.4 

42.8 
44.2 

45.6 

46.9 

48.3 
49.6 

51.0 
52.3 

53.7 
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(estimated by y ), and E the random error with its own limiting 
mean of zero and a standard deviation, oy The method of least 
squares requires that the sum of the squares of the residuals 
divided by the number of measurements, n, less the number of 
constants, p, in the mathematical equation will define 02. 

n 

; ' I  
Thus: oz = c ( r i -m)2/ (n-p)  

For Figure 4 this is: 

2 "  - 2  

Y i = ]  

which is also the standard deviation defined in Section 6. 
Data plotting of this sort (one dimensional) offers little 

opportunity to increase physical insight into the experiment. 
It is illustrated here to demonstrate that standard deviation is 
a special case of one-dimensional least squares fit about a hor- 
izontal straight line, while the least squares fit to a sloping 
straight line (8.1.2) results in what is known as standard error 
of estimate. This distinction should be noted particularly 
when using the prepackaged formulae of calculator software 
or microcomputers. 

8.1.2 If a set of experimental results plotted on a graph, 
such as Figure 5 ,  exhibits an obvious linear dependency of 
one variable, y, to the independent variable, x, the mathemat- 
ical expression may be written: 

0 = c ( y i - y )  /(n-z) 

y =a + bx + E 

where a (the intercept) and b (the slope) are two constants to 
be estimated (i.e., p = 2) and E is the random error with a limit- 
ing mean of zero and a variance of oz. Here again, in accor- 
dance with the method of least squares requirements to 
minimize the sum of the residuals squared, the variance is: 

J 
where the degrees of freedom, n (i.e., number of data points), 
are reduced by 2 because they are needed to determine the 
coefficients a and b. Note that # y , as in 8.1.1, since the func- 
tional relationship is not a constant (horizontal line) but rather 

Y 

-. 
Y 

Figurc 

10 

~~ ~ 

x 

4 Data plot illustrating one-dimensionai 
s t a t i s t i d  parameters. 

where the sum of the squares of the residuals 
n 

;= 1 

2 c ( y i - ; ; )  

will be a minimum when 

;= 1 ;= 1 
.. A A -  

and, = y - b x .  

Thus given a number of data points, it is possible to fit a 
straight line and to obtain a measure of the scatter, as well as 
the goodness of fit, by the parameter, or which is known as 
the standard error of estimate. 

For purposes of obtaining a measure of confidence for 
the fitted values of the intercept "3' and the slope "i ," the 
standard errors of and â are used: 

These estimates (Le., o? and oh2) along with the degrees 
of freedom associated with or2 can be used to determine the 
upper and lower bounds of the coefficients. These bounds are, 
respectively: 

b 

â f toi 
+toi 

where t is obtained from Table 2 for the desired confidence 
level and the assumed normal distribution curve as illustrated 
in Figure 5 .  

8.2 Nonünear Curve Fitüng. See Example 11 in the appendix. 
8.2.1 Often a plot of empirical data will exhibit a non- 

linear dependency of one variable upon another. In such 
cases, it is advisable to transform the mathematical expression 
selected to best fit the data to a linear format. Some common 
examples of this type of transformation are: 
1. An exponential curve: y = a . 6  

lnb) = ln(a) + bx 
y' = a' + bx 
y = a + bln(x) 
y = a + bx' 

2. A logarithmic curve: 

I 
h 

'3 < Jaäumed dJtJ probability 

Figure 5 Linear curve fit. 
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3. A power curve: y = &  
l n b )  = ln(u) + bln(x) 
y'= u'+ bx' 

Polynomial expressions can also be transformed but not 
without some complexity. Texts on linear regression analysis 
should be consulted for this. 

After the transform is effected, the analysis described in 
6.1.2 is performed on the transformed equation. When the 
variance used to quantify the scatter is determined and the 
inverse transformed back to the original graph, i.e., 

and 

is made, it should not be surprising that the bounds for a given 
confidence level are neither equal on either side of the fitted 
curve nor are they constant with the independent variable. 
This is illustrated in general in Figure 6. 

8.2.2 The selection of the proper equation form (Le-, 
mathematical expression) to be used for the curve fit is first 
dependent on whether it is known that the one variable is a 
function of the other or not. In most engineering data analysis, 
it is known that one variable has a functional dependency on 
the other. In these cases, the physics of the experiment should 
suggest the expected proper form (i.e., exponential, power, 
etc.) prior to fitting data. Of course, the data are needed to 
determine the specific coefficient values and thus provide the 
j =Ax) quantification necessary to fit the curve to the data 
points. In theory, it is possible to fit different equation forms 
to the same data (all transformed to linear format) and select 
the one with the smallest variance. However, this procedure is 
not recommended unless it is definitely known that some 
functional relationship between the plotted parameters does 
exist and that the independent variable measurement errors 
are significantly less than the dependent variable. Curve fit- 
ting of data plots where both variables have random errors of 
the same magnitude requires additional analysis, and Chapter 
5 of Reference 3 should be consulted. If a purely statistical 
correlation (i.e., it is not known if a functional relationship 
exists) is being attempted, the customary unit of measure for 

+ €  

- e  

~ 

Figure 6 Nonlinear curve fit. X 

deciding whether the data correlate linearly or not is the cor- 
relation coefficient, P, or its square, the coefficient of deter- 
mination. 

Although it is often stated that a value of P near 1 or -1 
suggests good correlation and a value near zero as no correla- 
tion, this is an oversimplification and not true in general. The 
significance of the value is strongly dependent on the number 
of data points and the level of confidence desired. Futher- 
more, no degree of statistical correlation can prove functional 
dependency; that can only come from the physics of the 
experiment. Before attempting statistical correlations, a thor- 
ough familiarity with Chapter 5 of Reference 7 and Reference 
8 should be attained. 
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This Appendix is not part of this Standard but is included for 
information purposes only. 

APPENDM. EXAMPLE SECTION 
Example 1. A reference bath is known to be completely stabi- 

lized at a temperature of 100°F (373°C). Thermometer A measures the 
temperature of this bath obtaining in successive measurements 105°F 
(40,6"C), 95°F (35"C), 100°F (373°C). 103°F (39.4"C), 99°F 
(37.2"C), and 98°F (36.7"C). Thermometer B @ves readings of 950°F 
(35.ODC), 952°F (35.loC), 943°F (34.9 OC), 951°F (35.i0C), and 
950°F (350°C). These results are shown on the figure below. Com- 
ment on the accuracy and precision of each. 

Thermometer A gives data with relatively large random (preci- 
sion) error. For this thermometer, the average of the six readings is 
100°F (37.8"C). Since this checks the known temperature of 100°F 
(37.8"C), we infer that little or no systematic (accuracy) error exists. 

Thermometer B, on the other hand, has little random error but 
relatively large systematic error. 

In many cases, the experimenter would take a single reading. 
For Thermometer A, the chance that such a single reading will be 
accurate is very small indeed. In general, we should replace Ther- 
mometer A, whereas Thermometer B could be calibrated to correct 
the systematic error. 

Example 2. Determine the uncertainty in the electric power, 
P, when determined from the expression: 
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where 
E and i are measured as 

E = 100 volts i 3  volts (3% uncertainty) 
I = 10 amperes 4 . 2  amperes (2% uncertainty) 

Based on the method of 5.2.1, the uncertainty in the power 

Based on the method of 5.2.2: 
Pm = (100+3)(10+0.2)= 1050.6watts 
Pmin = (100 - 3) (10 - 0.2) = 950.6 watts 
Using this method, the uncertainty is + 5.06%, -4.94%. It is 

quite unlikely that the power would be in error by these amounts 
because the maximum voltmeter variation would probably not 
occur at the same instant as the maximum ammeter variation. 

The nominal value for the power is 100 x 10 = loo0 watts. 

would be 3% (¡.e., maximum uncertainty in any parameter). 

Based on the method of 5.4.4 (recommended): 
wP = [(¿IP/¿IEw& + (¿IP/¿IIW~)’]~.’ 

= [(Iw,)’ + (EW,)’]~.’ 

w+P = [(w#/E + (WØI)’]~.~ 
Dividing by P = EL 

= [(0.03)’ + (0.02)2]05 = 0.036 or 3.6% 
Exumple3. An orifice flowmeter is used to measure the 

flow of air. The expression for obtaining the flow rate is 

where C is an empirid discharge coefficient, A is the flow area, pl is 
the upstream pressure, Ap is the pressure drop across the orifice, Ti is 
the upstream temperatwe, and R is the gas constant for air. Calculate the 
p e n t  uncertainty in the mass flow rate for the foliowing conditions: 

C = 0.92 i 0.005 (from calibration data) 
pi = 25 psia f 0.5 psia 
Tl = 70°F f 2°F or T1 = 530”R i 2”R 
Ap = pi - p2 = 1.4 psia * 0.005 psia (measured directly) 
A = 1.0 in.’ f 0.001 in.2 
The flow rate is a function of several variables, each subject to 

an uncertainty: 

Strictly speaking, p l ,  and Ap are not independent. However, 
because we measure Ap directly, and if we assume the change of Ap 
with respect to pi,  is quite small, we will assume that they are 
approximately independent in this case. 

Thus, we form the derivatives 
¿I in/ac = A[(2g,pl/RT~)Ap]o.’ 
¿I a ¿ I A  = C[(2g0pi/RTi)Ap]O.~ 
¿I nJdp1 = 0.5 CA[(2g~RTi)Ap]0.5p1‘0.5 
¿I in/a, = 0.5 C A [ ( ~ ~ , ~ I / R T ~ ] ~ , ~  Apo.’ 
¿I m/¿ITi = -0.5 CA(2ggi Ap R)O.’ 

The uncertainty in the mass flow rate may now be calculated 
by assembling these derivatives in accordance with 5.4.4. Dividing 
the assembly by Equation 1 yields 

(2) 
Wd h = [(wJc)’ + (wJA)’ + 0.25 ( ~ ~ i / p i ) ~  

+ 0.25 (wdAp)’ + 0.25 (W~~IT~) ’ ]~~’  

WJ h = [(0.005/0.92)’ + (0.001/1.0)’ 
+0.25 (0.5/25)’ + 0.25 (0.005/1.4)’ 
+ 0.25 (2/530)2]0.5 

= [29.5 x l u 6  + 1.0 x 10“ + 1.0 x l u 4  

= [1.373 x lO4lo.’ = 1.172% 
+ 3.19 x 10-6 + 3.57 x 10-610.5 

The main contribution to uncertainty is the p l  measurement 
with its basic uncertainty of 2%. Thus, to improve the overall situa- 
tion, the accuracy of this measurement should be attacked first. 

In order of influence on the flow rate uncertainty, we have 
1. Uncertainty in pl  measurement (*Y%) 
2. Uncertainty in value of C 
3. Uncertainty in determination of Ti 
4. Uncertainty in determination of 4 
5. Uncertainty in determination of A 

By inspecting Equation 2, we see that the first two items make 
practically the whole contribution to uncertainty. The value of the 
uncertainty analysis in this example is that it shows the investigator 
how to improve the overall measurement accuracy of the technique. 
First, one should obtain a more precise measurement of p l .  Then 
one should try to obtain a better calibration of the device, i.e., a bet- 
ter value of C. 

The following data were collected for a certain 
measurement from a Bourdon-tube pressure gage. Plot the data on 
probability paper and comment on the normality of the distribution. 

Exumple 4. 

Reading Number 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Gage Reading, psig 
46.0 
47.0 
48.6 
46.5 
46.3 
46.2 
46.9 
45.3 
45.9 
45.8 

cxi = 464.5 

The mean value is calculated from Section 6.2.3 as 

- = - 1 ”  x i  = - 1 (464.5) = 46.45 psig 
10 

i = l  n 

The data are plotted in the figure below and indicate a reason- 
ably normal distribution, although the straight line crosses the 50% 
ordinate at a value of approximately 46.2 psig, which does differ 
somewhat from the calculated mean value of 46.45 psig. Compari- 
son with Figure 2 indicates that the distribution is slightly skewed. 

The mean of 100 measurements is 52.00; the 
standard deviation of those measurements is 4.00. Find the 90% 
confidence limits of the population average. 

With a sample this large or larger, the estimate of the standard 
deviation from the sample may be used without correction, and the 
standard deviation of the mean of the estimate will be o/& , where 
o is the estimate of the standard deviation calculated from the sam- 
ple and n is the number of measurements. In this case the standard 
deviation of the mean is 4/10 = 0.40. 

Using the normal distribution, the table of normal deviates 
reveals that i 1.64 standard deviation from the average will include 
90% of the values, ¡.e., Zequals 1.64. 

We should then expect that 90% of the time we would be cor- 
rect in stating that the value of the parameter is within 51.34 to 
52.66 (52.00-[1.64 x 0.401 to 52.00 + [1.64 x 0.401). A less cau- 

Exumple5. 

12 
I 
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tious estimate (Le., 80% confidence interval) would have a nar- 
rower confidence interval (2 would be smaller), and a more 
confident estimate would have larger interval limits. 

"be following thermocouple readings were taken 
of a stabilized reference bath with various apparatus and procedures. 
Compute the mean reading, standard deviation, variance, mean devia- 
tion (probable mor), standard deviation of the mean, and estimate the 
uncertainty in the calcuiateú best value of the readings. 

Example 6. 

Reading Number EMF, mv 
1 5.30 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

n=21 

5.73 
6.77 
5.26 
4.33 
5.45 
6.09 
5.64 
5.81 
5.75 
5.42 
5.31 
5.86 
5.70 
4.91 
6.02 
6.25 
4.99 
5.61 
5.81 
5.60 

&i = 117.61 

The mean value is: 

- 1 "  1 
x = - 

n i =  1 
xi = - (1 17.61) = 5.60 21 

The following table aids in computing the other quantities: 
2 

X.-X (X.-%) 
1 1 Reading 

1 -0.30 0.0900 
2 0.13 0.0169 
3 1.17 1.3689 
4 -0.34 0.1156 
5 -1.27 1.6129 
6 -0.15 0.0225 
7 0.49 0.2401 
8 0.04 0.001 6 
9 0.21 0.0441 
10 0.15 0.0225 
11 -0.18 0.0324 
12 -0.29 0.0841 
13 0.26 0.0676 
14 0.10 0.0100 
15 -0.69 0.4761 
16 0.42 0.1764 
17 0.65 0.4225 
18 -0.61 0.3721 
19 0.01 o.Ooo1 
20 0.21 0.0441 

2 
Reading X i - X  ( X i  - X) 

a x i  -x) - 2  
21 0.0 0 

n = 21 Elxi - ;I = 7.67 
= 5.2205 

The standard deviation is 
0.5 0.5 

o = [: = [&(5.2205)] = 0.50 mv 
i =  

The average of the readings is 5.60 mv and the standard devia- 
tion is 0.50 mv. This means that if we arbitrarily select any single 
reading, there is (a) a 68.3% chance that it will fall in the region 
between 6.1 and 5.10 mv(XI1o); (b) a 95.5% chance that it will 

fall between 6.60 and 4.60 mv ( i f2o)  ; and (c) a 99.7% chance 

that it will fall between 7.10 and 4.10 mv (j;f3o). 
The variance is: 

oz = 0.25 mv 

The mean deviation ("probable error") is: 

The standard deviation of the mean is: 

0 = of = 0.5Olfi = 0.109 mv 

The arithmetic mean (best) value was 5.60 mv with the final 

j ;  = 5.60 + 0.109 mv; 68.3% (or 2.15 to i) 
= 5.60 + 0.218 mv; 95% (or 21 to 1) (Recommended) 
= 5.60 + 0.327 mv; 99.7% (or 256 to 1) 

result reported in terms of the uncertainty as: 

Euunple 7. Using Chauvenet's criterion, test the data of 
Example 6 for possible inconsistency. Eliminate questionable 
points and calculate a new standard deviation. 

First, the ratio dJo is calculated and data points eliminated in 
accordance with Table 3. 

Reading d j h  
1 0.60 
2 0.26 
3 2.34 
4 0.68 
5 2.54 
6 0.30 
7 0.98 
8 0.08 
9 0.42 
10 0.30 
11 0.36 
12 0.58 
13 0.52 
14 0.20 
15 1.38 
16 0.84 
17 1.30 
18 1.22 
19 0.02 
20 0.42 
21 0 

in IYXOCdSmX with Tabk 3 for 21 nadings, mdings with vahits of 
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d i a  > 2.2 are questionable. Thus, only readings 3 and 5 may be eliminated- 

Elimination of these points yields a new estimated mean value. 

= - 1 "  c xi= (;)(106.51)= 5.61 
n;, 1 

Note the change in terminology from mean value to estimated 
mean value because the sample size has fallen below that required 
for multisample treatment. 

Now the best estimate for the standard deviation is obtained by: 

0' = [- 1 "  c, 
" - l i = ,  

The value for 0' is now calculated with the following table: 

Reading 

1 
2 
4 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

x.-x' 

-0.31 
0.12 
-0.35 
-0.16 
0.48 
0.03 
0.20 
0.14 

-0.19 
-0.30 
0.25 
0.09 
-0.70 
0.41 
0.64 
-0.62 
0.00 
0.20 
0.01 

I 

2 
( X i  - x') 

0.0961 
0.0144 
O. 1 225 
0.0256 
0.2304 
O.OOO9 
0.0400 
0.0196 
0.0361 
0.0900 
0.0625 
0.0081 
0.4900 
0.1681 
0.4096 
0.3844 
O.oo00 
0.04oO 
o.Oo0 1 

n =  19 

d = [('Il8) (2.2384)]0.5 = 0.35mv 

On the basis of the t-disîribution, an estimate of the me value of x is: 

For the 18 degrees of freedom of this problem and the recom- 
mended confidence level of 95% 

t = 2.101 

and the estimate of the bue value of x becomes 

x =  5.61 f 2.101 (0.35)/&9 = 5.61 f 0.17 mv 

with the final result reported as 

x = 5.61 I 0.17 mv; 95% 

Example 8. Measurements of the power supplied to a com- 
pressor motor were made on two different days. A summary of the 

test results is given below: 

Aug. 1 (Test A) Aug. 3 (Test B) 
n =8 n =17 
i = 3.791 kW i = 4.234 kW 

R - 2  i (xi-;)'= 1.270 
; = I  i =  1 

c ( x i - x )  = 1.055 

The test conditions and method of testing were supposedly the 
same for the two tests. Do these two sets of data belong to the same 
population? 

In comparing two sets of data, we should use a pooled estimate 
of the standard deviation of the mean in computing the f-value. 

o = 0Jr/nA+T1';.8> 
where 

F = n A + n B - 2 =  23 

(T = 0.318 kW 

6 = 0.318 - + - =0.136 d(3 (i7) 

For F = 23 and t = 3.3, Table 2 indicates that this +due  corre- 
sponds to a probability level of 0.001 and would occur only about 
once in lo00 times if there were no significant difference between 
the two tests. Thus we can be fairly certain that either the test condi- 
tions or method of testing were not the same for the two tests. 

A manufacturer of air-conditioning equipment 
buys motors from two motor manufacturers. Wo-thirds are pur- 
chased from manufacturer A, and FA failures are observed. One- 
third is purchased from manufacturer B, and FB failures are 
observed. Is there a significant difference in failure rates between 
the two motor manufacturers? 

The total number of failures is FA + FB. Since manufacturer A 
has supplied two-thirds of the motors, we would expect that they 
would have two-thirds of the failures. Thus, the chi-squared value is 

Example 9. 

X' = [FA -  FA 4- F B ) ] ~  [FB - '13 (FA 4- F B ) ] ~  
'h(FA +FBI ' h  (FA + FBI 

F =  1 

Suppose FA = 17 and FB = 13 
x' = 9i20 + 9/10 = 1.35 
From Table 4 we can see that this corresponds to a probability 

level of about 25%. Thus, it is not unreasonable (although not 
proved) to say that there is no significant difference in failure rates 
for the motors from manufacturers A and B. 

Now suppose that FA = 170 and FB = 130. In this case we have 
the same ratio of failure rates but a much larger sample. 

x2 = 13.5 

Table 4 shows that this value of chi-squared would occur con- 
siderably less than 1% of the time, by chance alone, if there were no 
significant difference in failure rates between A and B. Thus, we 
can be almost certain that motors from manufacturer B are inferior 
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to those from manufacturer A. 
Example 10. The Energy Policy and Conservation Act 

(EPCA) establishes an energy conservation program for consumer 
products. The Department of Energy (DOE) has developed test pro- 
cedures for the program, which are prescibed to be not unduly bur- 
densome to conduct. Therefore, sampling provisions have been 
designed both to maximize the confidence with which test results of 
units actually tested can be applied to similar units not tested and to 
minimize the testing burden on manufacturers. 

The sampling approach recommended by DOE is described by 
“one-sided confidence limits.” The one-sided method places either 
an upper limit or a lower limit on the range or interval in which the 
true mean is likely to be found. For example, when measuring 
something such as the SEER of an air-conditioning unit, for which 
consumers would favor higher values, the represented value shall be 
no higher than both the adjusted sample mean and the actual sample 
mean. The adjusted sample mean is defined as the value for which 
there is 90% confidence that the true mean is not less than 95% of 
the adjusted sample mean. 

Consider the case in which a manufacturer tests two units from 
a line of air conditioners. Unit A gave a SEER value of 8.2, and 
Unit B a SEER value of 8.6. What SEER would the manufacturer 
be allowed to represent for this line of air conditioners? 
The mean value of the sample is 

The standard deviation is 

O’ = - [ n i l . -  ,:, 
0.5 

O‘ = [1[(0.2)~ 1 + (-0.2)2]] = (O.O8)O.’= 0.28 

The lower confidence limit for the true mean can be estimated 
from the method of 5.4.3. 

The value of t  can be determined from Table 2. 
Degrees of freedom = number of observations - number of dif- 

ferent quantities 

P = (1- 0.9)2 = 0.2 

where 0.90 is the confidence level and the factor of 2 is used to con- 
vert our “one-sided confidence limit” to the “two-sided confidence 
limit” on which Table 2 is based. 

From Table 2, t = 3.078 
3.078 .0.28= 7.79 

A = 8.4- 

Adj. = 2- - 8.2 0.95 - 
Thus, on the basis of these tests the manufacturer could only 

represent the SEER of the line of air conditioners as 8.2, and it 
would probably be advantageous for him to conduct a test on a third 
unit. Suppose Unit C was tested and gave a SEER value of 8.3. 

-t 

x = ‘148.2 + 8.6 + 8.3) = 8.37 

O‘ = [‘ /~(-0.17)~ + (0.23)2 + (-0.07)2]0.5 = 0.21 

t = 1.886 

x =  8.37-1.886 * 0.21/ J3 = 8.14 

Adj. = 8.140.95 = 8.57 
Now, the manufacturer is ailowed to represent the SEER of the line of 
air conditioners as the mean of the sample, or 8.37. 

Example II. A residential air conditioner capacity decay is 
measured from the moment the compressor and fan in the outdoor 
unit are shut off. The unit of measure is the ratio of the temperature 
change across the indoor coil to the steady-state value, where the 
steady-state value includes the heat from the indoor fan, which is 
also shut off with the compressor. It is desired to find the best curve 
fit for the following data: 

Time 
O min 
0.25 
0.50 
0.75 
1 .o0 
1.25 
1 .so 
1.75 
2.00 
2.25 

% of S.S. Value 
88.2 
70.5 
38.1 
31.4 
20.2 
13.2 
8.4 
5.8 
4.6 
1.8 

Since the normalized capacity is clearly a nonlinear function 
of time and experience suggests that capacity decay follows an 
exponential curve, a least squares fit to a transformed exponential 
expression is recommended: 

y = aebx 

or 

y‘ = a’ + bx 

where 
y’ = In (y) = % of S.S. value, 
u’ = in (u) = intercept of y’ axis at x = O, 
b = slope of linearized transformed equation, and 
x = time. 
”he least squares method will evolve an equation: 

9; = a’ +6xi 

which will describe the fitted cume if the constants are evaluated as 
follows: 

O 88.2 4.480 -1.958 1.266 
0.25 70.5 
0.50 38.1 
0.75 31.4 
1.00 20.2 
1.25 13.2 
1 .so 8.4 

1.75 5.8 
2.00 4.6 
2.25 1.8 

- 
x = 1.125 b 

4.251 
3.640 
3.447 
3.006 
2.580 
2.128 
1.758 

1.526 
0.588 

j‘ = 2.740 

-1.322 
-0.563 
-0.265 
-0.033 
4.024 
4 . 2 3 0  

-0.614 

-1 .O62 
-2.421 

Z = -8.492 

0.766 
0.391 
0.141 
0.016 
0.016 
0.141 

0.391 

0.766 
1.266 

E= 5.156 
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a' = y'-bx=2.740-(-1.647)1.125=4.593 

"his results in the best fittedequation in the transformed state being: 

y = 4.593-1.6472 

By taking the inverse of the transformed term: 

the expression for fitting the original data is: 

Y = 98.79 e-1.647x 

It is now possible to obtain a measure of data scatter by deter- 
mining the standard error of estimate, as follows: 

xi Y; 
-- 

O 4.480 
0.25 4.251 
0.50 3.640 
0.75 3.447 
1.00 3.006 
1.25 2.580 
1.50 2.128 
1.75 1.758 
2.00 1.526 
2.25 0.588 

4.593 
4.182 
3.770 
3.358 
2.947 
2.534 
2.123 
1.71 1 
1.299 
0.887 

0.0128 
0.0048 
0.0169 
0.0079 
0.0035 
0.0021 
O.oo00 
0.0022 
0.0515 
0.0894 

- PiØ 
98.79 
65.50 
43.38 
28.73 
19.05 
12.60 
8.36 
5.53 
3.67 
2.43 

I: = 0.191 1 

+ "'J = e(o.888 + .I543 - + 0.41 ).- -0.35 
y10+ay = e - 2.84 

yio+o, = e = e  - 2.08 (j;o +U*') (0.888 -. 154s) - 

The results of these calculations are illustrated in the figure below. 
As a matter of rigor it is possible to determine the bounds on 

the fitted curve coefficients, u and b, with a 95% level of confi- 
dence as follows: 

-2 0.5 
X 

It 

b f ta- = -1.647 f (2.306)0.0680 = -1.647 f 0.157 or is 
b 

within -1.490 < < -1.804 
-, a f ta; = 4.593 f (2.306) 0.0908 = 4.593 f 0.209 

taking the inverse 4 = e(4.593 + 0.m) = 121.8 
- - ,(4.593 - 0.209) = 80.2 

or Û is within 80.2 < Û < 121.8. 
What becomes obvious from this final calculation is that once 

the scatter is more or less set with these data points, little is to be 
gained (¡.e., the bounds within which the coefficients are known to 
exist) by taking more data, since from Table 2 it can be seen that the 
r-value can only be reduced by about another 15%. Of course, for 
this problem the physics suggest that Û is not greater than 100, 
which helps considerably. 

This value is for the linear (transformed) equation. To obtain the 
bounds for the original (inverse) equation, consider the end points: 
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POLICY STATEMENT DEFINING ASHRAE'S CONCERN 
FOR THE ENVIRONMENTAL IMPACT OF ITS ACTIVITIES 

ASHRAE is concerned wi th  the impact of its members' activities on both the indoor and out- 
door environment. ASHRAE's members will strive t o  minimize any possible deleterious 
effects on the indoor and outdoor environment of the systems and components in their 
responsibility while maximizing the beneficial effects these systems provide, consistent with 
accepted standards and the practical state of the art. 

ASHRAE's short-range goal is t o  ensure that the systems and components within its 
scope do not impact the indoor and outdoor environment t o  a greater extent than specified 
by the standards and guidelines as established by itself and other responsible bodies. 

As an ongoing goal, ASHRAE will, through its Standards Committee and extensive tech- 
nical committee structure, continue t o  generate up-to-date standards and guidelines where 
appropriate and adopt, recommend, and promote those new and revised standards devel- 
oped by other responsible organizations. 

Through its Handbook, appropriate chapters will contain up-to-date standards and design 
considerations as the material is systematically revised. 

ASHRAE will take the lead wi th  respect t o  dissemination of environmental information of  
its primary interest and will seek out and disseminate information from other responsible 
organizations that is pertinent, as guides to  updating standards and guidelines. 

The effects of the design and selection of  equipment and systems will be considered 
within the scope of the system's intended use and expected misuse. The disposal of haz- 
ardous materials, if any, will also be considered. 

ASHRAE's primary concern for environmental impact will be at the site where equip- 
ment within ASHRAE's scope operates. However, energy source selection and the possible 
environmental impact due t o  the energy source and transportation will be considered where 
possible. Recommendations concerning energy source selection should be made by i ts 
members. 
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