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Abstract 
It is becoming increasingly common that 
practicing engineers are being called upon to 
design buildings and other civil infrastructure 
systems with an underlying “performance-
based” objective.  Then, merely using design 
codes (even if they are reliability-based) will not 
be adequate in verifying performance against 
different limit states.  The teaching of courses in 
structural reliability often follows a traditional 
lecture format that leaves the student with an 
unclear view of the distinctions between the 
various load- and resistance-related parameters 
involved in the design process.  The ability to 
include computer applications in such structural 
reliability courses can greatly help in 
understanding the fundamental concepts, in the 
presentation of real-world numerical examples, 
and in clarifying the role of different variables 
in safety and performance. 

Structured teaching modules are 
demonstrated here for a computer-based 
structural reliability course.  From a pedagogical 
viewpoint, these examples might help the 
student to learn: (i) the role of uncertainty in 
engineering failures; (ii) the use of analytical 
tools – such as simulation and optimization 
techniques – for assessing the reliability of 
structural components. 

Curriculum elements of a traditional 
structural reliability course such as the first-
order reliability methods (FORM), Monte Carlo 
simulation, and the development of the LRFD 
(Load and Resistance Factor Design) 
methodology are the focus of the teaching 
modules presented.  Illustrative examples 
developed using LabVIEW are presented. 

It is expected that the development of a 
semester-long course using teaching modules 
similar to those presented here could provide the 

necessary introduction to civil engineering 
students interested in studying structural 
reliability. 

 
Introduction 
Structural reliability is concerned with the 
ability of a structure to function according to its 
intended purpose.  Traditionally, structures are 
designed to meet or be checked against one or 
more limit states of performance.  Design 
philosophy in current times has been 
increasingly based on reliability.  This generally 
requires “checking”  designs against relevant 
limit states.  An established format for such 
checking is the so-called LRFD methodology 
employed in structural design codes (e.g., ACI 
(1995), AISC(1995)).  In this design format, 
load and resistance factors are applied to 
nominal (conservative) load and resistance 
values that implicitly guarantee a prescribed 
safety margin against a limit state of 
performance.  In Teaching Module 1 presented 
here, we discuss the LRFD methodology and 
explain how load and resistance factors may be 
derived for a specified/target reliability. 

In contrast to the code-based approach to 
reliability analysis, engineers are sometimes 
called upon to assess the reliability of a 
structural component or system by explicit 
computations that incorporate uncertainties in 
all variables that affect performance.  This is 
especially true for structures other than 
conventional buildings (e.g., for offshore 
platforms).  Then, it is necessary to be able to 
employ analytical techniques that utilize 
probabilistic/statistical information on key 
random variables affecting load and resistance 
quantities.  Two such techniques are the Monte 
Carlo simulation method and the first-order 
reliability method (FORM).  In Teaching 



Modules 2 and 3 presented here, these two 
methods are applied to two different structural 
reliability problems.  In one case, the ultimate 
limit state of a steel beam under flexure is 
considered; in the other, a fatigue limit state 
based on a fracture mechanics approach is 
considered for a specific component of a steel 
bridge. 

The three examples presented here represent 
teaching modules that may usefully be 
incorporated into a course on structural 
reliability and may be taught using a computer-
based approach.  Such an approach offers the 
student a hands-on understanding of the 
reliability problem being studied.  The 
LabVIEW software, employed here for the 
teaching modules, with its built-in numerical 
libraries and user interfaces represents a 
convenient means for teaching this material. 
 
Teaching Module 1 
LRFD Methodology and Derivation of Load 
and Resistance Factors 
A quantitative description of the uncertainty in 
load- and resistance-related parameters can lead 
to the derivation of load and resistance factors 
for use in design checking equations.  Target 
reliability levels may be specified and such 
factors computed.  Design codes employ such 
load and resistance factors to meet safety 
(ultimate), serviceability or durability limit 
states.  In an ultimate limit state, for example, a 
structure may be required to be designed such 
that its strength or resistance is greater than the 
effects of all applied loads. 

Let S and R be the applied load and the 
resistance, respectively, of a structure to be 

designed.  An example of the description of the 
uncertainty in S and R is shown in Figure 1.  For 
this illustration, we will assume that S and R are 
independent normal random variables with 
mean values, µS and µR, respectively, and 
standard deviations, σS and σR, respectively.  
Nominal load and resistance levels, SN and RN, 
are conservative levels chosen for design and 
are typically 2-3 standard deviations from their 
mean values.  A nominal safety factor, SFnominal, 
may then be given as 
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The overlap area between the curves 
representing probability density functions, fS(s) 
and fR(r), is directly related to the probability of 
failure of the structure.  Clearly, the probability 
of failure depends on the distribution of S and R 
and on the parameters, µS, µR, σS and σR.  We 
can define a safety margin, Z, as follows: 

SRRSZ −=),(                    (2) 
If we assume that S and R are statistically 

independent (normal) random variables, Z will 
also be described by a normal distribution with 
mean value equal to µR-µS and standard 
deviation, (σR

2 + σS
2)1/2. 

The probability of failure, which is also equal 
to the probability that Z is less than zero, may be 
given in terms of the reliability index, β, as 
follows:  
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If we define a parameter, ε, as follows: 
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the reliability index, β, can be written in terms 
of ε as: 
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It is usually the case that design checking is 
done by defining nominal loads and resistances 
at conservative levels (relative to their mean 
values).  We define two quantities, kS and kR, to 
define the degree of conservatism in these 
nominal values.  A value of 2 for kS implies that 
the nominal load level is 2 standard deviations 
above its mean value.  The nominal load and 
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Figure 1   Probability Density Functions for 
the random variables, S and R, in Teaching 

Module 1. 
 



resistance values may be given as follows 
(where VS = σS/µS is the coefficient of variation 
on the load, S, and VR = σR/µR is the coefficient 
of variation on the resistance, R): 

)1( ssSN VkS += µ               (6a) 

)1( RRRN VkR −= µ              (6b) 

In the traditional LRFD format for design 
checking, a resistance factor, φ, and a load 
factor, γ, are applied to the nominal resistance, 
RN, and the nominal load, SN, respectively.  
These factors may be derived in terms of 
various quantities defined above.  Thus, we 
have: 
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LabVIEW Illustration of LRFD Methodology 
Consider a structure where the load, S, and the 
resistance, R, are normal random variables.  The 
load is such that µS = 50 kips and VS = 0.25, and 
it is known that VR = 0.1.  Assuming that kS = 2 
and kR = 2 for defining nominal levels, we are 
interested in determining load and resistance 
factors for a target probability of failure.  All the 
relevant parameters are input in LabVIEW.  
Load and resistance factors may then be 
calculated as shown in Figure 2. 

From this illustration, the student can gain 
the following insights: 
a) The derived resistance and load factors are 

closely related to the values of kR and kS 
selected to define the nominal values.  For 
the same reliability, a small value of kR, 
which might indicate a nominal resistance 
that is not conservative enough, will require 
a low resistance factor. 

b) A change in the target reliability will lead to 
corresponding changes in the nominal load 
and resistance or in the derived factors.  For 
example, if the nominal value for S is the 
same for designs that must guarantee a 10-4 
probability of failure compared to those for 
a 10-3 value, the associated resistance factor 
and nominal resistance have to be more 
conservatively defined as can be seen in 
Figure 2. 

From this LabVIEW application, students 
can immediately see how the various input 
parameters affect the nominal capacity 
reduction factor and nominal load factor in 
LRFD codes.  Thus, the reliability basis of the 
entire design process is rendered transparent and 
understandable to the student. 

 
Teaching Module 2 
Ultimate Limit State of a Steel Beam in 
Flexure 
In this module, a steel beam in flexure is 
considered.  The limit state function g(Fy, Z, M) 
for such a problem in reliability is given as: 

MZFMZFg YY −⋅=),,(         (9) 
where Fy is the yield strength of the steel used, Z 
is the plastic section modulus, and M denotes 
the applied moment.  The probability of failure, 
Pf, may be given as follows: 

)0),,(( <= MZFgPP Yf  
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where β is the reliability index. 
 
LabVIEW Illustration for an Ultimate Limit 
State involving a Beam under Flexure 
For this illustration, the various random 
variables that are of importance have the 
statistical distributions and associated  

Figure 2   Inputs and outputs from 
LabVIEW for Teaching Module 1. 



parameters (mean and coefficient of variation 
(COV)) as shown in Table 1. 
 

Variable Type Mean  COV 
Fy Normal 40 ksi 0.125 
Z Normal 50 in3 0.05 
M Normal 1000 kip-in 0.2 

Table 1   Random Variables and Distribution 
Parameters in Teaching Module 2 

 

We will assume that all three random 
variables are uncorrelated and will employ two 
different techniques to evaluate the reliability of 
the beam: Monte Carlo simulation and the first-
order reliability method (FORM). 
 
Monte Carlo Simulation 
This is a procedure that essentially involves 
repeated sampling of all the random variables 
and checking of the limit state in each sampling. 
•  Fy, Z, and M are sampled N times (N may be 

selected by the user) to represent their real 
distributions using a random number 
generator. 

•  The number of samples, Nf, that result in 
failures (i.e., g(Fy, Z, M) < 0) is determined. 

•  The probability of failure is estimated as: 

N
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From this illustration, the student can learn 
that the estimate of Pf depends on the number of 
simulations.  The convergence to a stable value 
of Pf as a function of N is indicated in Figure 3. 
 
First Order Reliability Method 
A Newton-Raphson optimization scheme (see 
Madsen et al, 1985) is employed in a search for 
the most-likely-to-fail point on the failure 
surface.  Gradients of the limit state function, 
g(Fy, Z, M), are computed in each iteration and 
aid in the search.  Iterations are performed until 
the probability of failure converges to within a 
user-specified tolerance.  Thus, we have: 
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in which Pf,n and Pf,n-1 denote the probability of 
failure estimates in the nth and the (n-1)th 
iteration, respectively. 

 
The same problem that was solved using 

simulation is also solved using the FORM 
approach.  User inputs can include different 
starting points for the search as well as different 
levels of tolerance.  As seen in Figure 3, 
probability of failure values computed based on 
Monte Carlo simulations and the FORM 
algorithm are fairly close to each other. 

This LabVIEW illustration of reliability 
analysis using two different techniques is easy 
to follow and allows the student to alter various 
inputs in trying to learn the basis for these 
analytical tools.  Various outputs are presented 
in the form of numerical summaries as well as 
graphical displays.  Useful insights into what 
parameters affect the reliability of structures can 
be gained from illustrations such as these. 

 
Teaching Module 3 
Fatigue Limit State for a Steel Bridge 
Component 
On the basis of results in numerous metal 
fatigue experiments, Paris (1964) found a 
relationship between crack growth rate and 

 
Figure 3   Failure probability calculations 

from Monte Carlo simulation and FORM in 
Teaching Module 2. 



stress intensity range that may be described as 
follows: 

mKA
dN
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where a is the crack length, N is the number of 
stress cycles, A and m are fatigue constants, and 
∆K is the stress intensity range.  From the theory 
of linear elastic fracture mechanics, K∆ can be 
given as follows: 

aaYK πσ ))(( ∆=∆                (14) 
where Y(a) is defined as a geometry function 
related to the crack geometry and shape of the 
specimen, and ∆σ represents the tensile stress 
range.  Substituting Equation (14) into (13), 
with separation of variables and integration, 
leads to the solution: 
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where ψ(a2,a1) is defined by Madsen et al. 
(1985) as follows: 
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Two types of failure criteria have been 
proposed to describe limit state functions for 
fatigue reliability problems. 

Type (1):  0≤− Nc aa  

Type (2):  0≤− NIC KK  
In the first type, failure occurs when the 

crack size, aN, after N stress cycles, exceeds a 
critical crack size, ac.  Failure may also occur 
when the stress intensity factor, KN, exceeds the 
fracture toughness, KIC.  Madsen et al. (1985) 
suggest the following limit state function that 
considers a critical crack size under variable-
amplitude loading: 

)()(),()( 00 NNAaag m
c −∆−= σX    (17) 

The failure probability for such a fatigue 
limit state can be written as: 

)()0)(( β−Φ=≤= XgPPf          (18) 

 
LabVIEW Illustration for a Fatigue Limit 
State involving a Steel Bridge Component 
In order to demonstrate the LabVIEW 
implementation of this reliability analysis 
problem, we consider the practical steel bridge 
fatigue problem studied by Zhao and Haldar 
(1994). 

Consider a full-penetration butt-welded 
tension flange component with 42 in. width (w) 
in a 70-ft span steel bridge that is subjected to 
train loading, 112 stress cycles per day (or a 
design life of 50 years).  The critical crack size, 
ac, of this component is 2 in. and a “center-
notch crack”  mode is considered in this 
example.  The other necessary statistical 
characteristics of this component are as follows: 

 

Variable Type Mean 
Value COV 

∆σ0 Constant 6.334 0.0 
a0 Lognormal 0.020 0.50 
ac Constant 2.000 0.00 
A Lognormal 2.05� 10-10 0.63 
m Constant 3.000 0.0 

N Constant 
1 �  106 

to 5.5 �  106 
0.0 

w Constant 42.0 in. 0.0 
Note that, for simplicity, m is assumed to be 

constant, equal to 3 here. 
Table 2   Random Variables and Distribution 

Parameters in Teaching Module 3. 
 

Paris (1964) proposed the following 
geometry function to deal with the crack 
geometry and the shape of center-notched 
specimens with finite width: 

ε
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where ε = 2a/w; a is the crack size and w is the 
width of the specimen.  Zhao and Haldar (1994) 
expressed the mean-stress effect, m)( σ∆ , as 
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Substituting Equations (19) and (20) into the 
limit state function of Equation (17) with the 
variable transformation from a to ε, we obtain: 
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The variable, ε0, is assumed to follow a 
lognormal distribution with a mean value of 
9.524×10-4 and a coefficient of variation of 0.5.  
Equation (21) is defined together with other 
necessary random variables in the LabVIEW 
implementation.  This fatigue reliability analysis 
is then solved using two techniques: Monte 
Carlo simulation and FORM.  Results from both 
methods are presented in the form of a plot 
showing the β index versus number of cycles, N.  
From the plot, we see that especially for cases 
with a large number of simulations, the two 
methods lead to very similar results. 

The advantages of using a LabVIEW 
implementation to illustrate this problem in 
fatigue reliability are as follows: 
1. The operating interface developed is easy 

for the student to understand and to modify 
for any other situation. 

2. The values of different statistical parameters 
may be changed easily and the results can be 
immediately observed in graphical 
summaries such as the one in Figure 4.  This  
enables one to evaluate the role of different 
variables on the reliability of the component. 

 
 
 

Discussion and Conclusions 
The introduction of a computer environment 
that may be used as a platform for 
demonstrating mathematical concepts can 
greatly improve the learning of material in a 
course such as structural reliability.  Obvious 
advantages exist over a traditional lecture 
format since students can take a hands-on 
approach to understanding the role of load and 
resistance uncertainties on the safety and 
performance of structural components and 
systems.  Analytical techniques as well as 
design choices become more meaningful and, as 
the three teaching modules presented here have 
shown, the computer implementations using 
software such as LabVIEW can offer at once a 
grasp of the theoretical concepts as well as a 
platform for demonstrating realistic applications 
of the theory. 
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