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Abstract

The reliability of wind turbines against extreme loads is the focus of this study. A procedure

to establish nominal loads for use in a conventional load-and-resistance-factor-design format

is presented. The procedure, based on an inverse reliability approach, permits inclusion of

randomness in the gross wind environment as well as in the extreme response given wind

conditions. A detailed example is presented where three alternative nominal load definitions

are used to estimate extreme bending loads for a 600 kW three-bladed horizontal-axis wind

turbine. Only operating loads—here, flapwise (out-of-plane) bending moments—at a blade

root are considered but the procedure described may be applied to estimate other loads and

response measures of interest in wind turbine design. Results suggest that a full random

characterization of both wind conditions and short-term maximum response (given wind

conditions) will yield extreme design loads that might be approximated reasonably well by

simpler models that include only the randomness in the wind environment but that account for

response variability by employing appropriately derived ‘‘higher-than-median’’ fractiles of the

extreme bending load conditional on inflow parameter values.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In reliability-based design, the conventional load-and-resistance-factor-design
(LRFD) procedure involves the scaling of a nominal load, Lnom; by a load factor, gL;
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and the scaling of a nominal (or characteristic) resistance, Rnom; by a separate
resistance factor, fR; to account for possible overload and understrength. This is
done in the following checking equation which aims to provide for design against a
specified limit state:

fRRnomXgLLnom: ð1Þ

Calibration of both the scaling factors and the associated definitions of Lnom (for
example, as a load level associated with a specified return period) and Rnom are
needed to guarantee specified probabilities of meeting the limit state under
consideration. For wind turbine generator systems, a similar reliability-based design
format is employed in the IEC 61400-1 code where the load factor, gL; and the
resistance factor, fR; in Eq. (1) are combined into a single factor, gn; that represents
a safety factor for ‘‘consequences of failure’’ [1].
Various alternative definitions of the nominal load level may be employed to

account for load variability. In the present study for wind turbine extreme loads, we
consider three such load definitions related to assumptions used in representing load
uncertainty in Eq. (1). The key uncertainties in the design of wind turbines arise from
(i) the gross inflow parameters, usually taken to be the 10-min mean horizontal wind
speed at hub height and the standard deviation (also a measure of turbulence
intensity) of the same wind speed process; and (ii) the 10-min maximum load/
response conditional on the inflow parameters.
In the following, we refer to the inflow parameters as simply mean and standard

deviation of wind speed, with an understanding that we are referring to statistics of
the time-varying horizontal wind speed process at hub height. We consider an
extreme flapwise (out-of-plane) bending moment at the blade root as the load of
interest. Our objective is to establish appropriate nominal design loads for several
target reliability levels (or, equivalently, for several different return periods). These
loads defined with different degrees of complexity in the assumptions on the
variability of the key random variables are compared and insights gained from this
comparison are discussed to aid in development of a rational procedure for
establishing design loads.

2. Structural reliability and inverse methods

The first-order reliability method (FORM) is essentially an ‘‘analysis’’ approach
whereby one seeks a ‘‘solution’’ which corresponds to a most-likely-to-fail
combination of the various load and resistance quantities (for details related to
FORM, see [2]). The probability of failure associated with this combination is easily
estimated but it is not known a priori. An iterative approach in such ‘‘forward-
FORM’’ analyses where one adjusts, for example, the resistance/capacity level to
yield a specified reliability or probability of failure would constitute a ‘‘design’’
procedure. This iterative procedure, however, is tedious in many situations.
An alternative approach is to use ‘‘inverse reliability’’ techniques that avoid

multiple forward-FORM iterations. Many recent studies have proposed procedures

ARTICLE IN PRESS
K. Saranyasoontorn, L. Manuel / J. Wind Eng. Ind. Aerodyn. 92 (2004) 789–804790



for these techniques and/or have applied them to different design
problems. Winterstein et al. [3] developed an inverse first-order reliability
method (inverse-FORM) procedure that is based on the use of ‘‘environmental
contours’’ that uncouple environmental random variables from structural
response. Using examples related to offshore structures, they showed
how this method may be applied to estimate design loads associated with
specified target reliability levels. Der Kiureghian et al. [4] proposed an extension
of the Hasofer–Lind–Rackwitz–Fiessler FORM algorithm that uses a search
direction and a merit function as part of a very efficient procedure that finds the
design point associated with a target reliability. Li and Foschi [5] showed, using
several examples, how multiple design variables may be treated in an inverse
reliability procedure.
Recently, Fitzwater et al. [6] applied inverse reliability methods for extreme

loads on pitch- and stall-regulated wind turbines where they employed results
from aeroelastic simulations to represent the response given inflow conditions.
The response variable there was treated as deterministic allowing the use of
2-D environmental contours based on Winterstein et al. [3]. In the present study,
our interest is in estimating design extreme flapwise bending loads for a
600 kW three-bladed horizontal-axis wind turbine that was previously studied
by Ronold and Larsen [7], where results from field measurements were reported
and probabilistic models for response (loads) conditional on inflow conditions
were presented. The distinction between the present study and that by Fitzwater et al.
[6] is that we propose alternative nominal load definitions (one of which
includes response variability) and we employ field data instead of simulations
in developing parametric models for the random response conditional on inflow.
Our alternative load definitions are based on what will be described as 1-D, 2-D,
and 3-D models which refer to how the inflow and response variables are
treated—i.e., whether deterministic or random. The full 3-D characterization
of variables refers to modeling of all variables as random, while the other
two models refer to simplifications where, in the 1-D case, only mean wind
speed is modeled as random and, in the 2-D case, the mean and standard
deviation of the wind speed are both modeled as random (but response is not).
A discussion of enhancements to the 2-D model that reflect omitted
randomness in the response (conditional on inflow) is presented that is
based on the use of omission sensitivity factors [8,3]. Such enhancements
approximately get at the full randomness of the response by employing
‘‘higher-than-median’’ fractiles of the extreme bending load conditional on
inflow—these are improvements on the ordinary 2-D model that uses a deterministic
representation of response or, effectively, median levels of load conditional on
inflow.
The alternative nominal load definitions are presented next, along with a

general background on the Inverse-FORM framework for establishing design
loads. Design load levels for different return periods based on the alternative
models are compared for the 600 kW wind turbine described by Ronold and
Larsen [7].
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3. Alternative models

Our interest here is in obtaining estimates of a nominal load, Lnom; for failure
in an extreme/ultimate limit state associated with bending of a wind turbine
blade in its flapwise (out-of-plane) mode. We assume that the uncertainty in these
extreme bending loads depends on inflow parameters and on short-term maximum
loads conditional on the inflow parameters. As stated previously, the inflow
parameters that characterize the wind are the ten-minute mean wind speed at hub
height, U10; and the standard deviation, s; of the wind speed. The load, Lnom;
considered here is the extreme flapwise bending moment at the root of a turbine
blade corresponding to a specified return period of T years. From the field data on
the wind turbine considered, ten-minute extremes of the random flapwise bending
moment, Mext; are used to derive the nominal load, Lnom: For convenience, in
discussions that follow, we will refer to the three short-term (i.e., 10-min) random
variables, U10; s; and Mext as X1; X2; and X3 that make up the physical random
variable space, X :
Consider a situation where the joint probability description of X1; X2; and X3 is

available in the form of a marginal distribution for X1 and conditional distributions
for X2 given X1; and for X3 given X1 and X2: The simplest definition of Lnom is based
on a representative load derived from the T-year value of the random X1 (mean wind
speed) alone and consideration of X2 (standard deviation on wind speed) and X3 (10-
min extreme bending load) only by representing these as conditional median values.
In this model for Lnom; uncertainty is neglected in both X2 and X3: A second
definition might be based on a representative T-year load that includes randomness
in both X1 and X2 but still neglects uncertainty in the short-term load, X3: Again, this
load is held fixed at its median level given X1 and X2: Finally, a definition for
nominal load could be based on the ‘‘true’’ T-year nominal load including
uncertainty in all of the three variables. We refer to these definitions as ‘‘1-D’’, ‘‘2-
D’’, and ‘‘3-D’’ probabilistic models, respectively. The nominal loads based on these
models can be expressed as

Lnom;1-D ¼ #X3ðX1; #X2jX1Þ; Lnom;2-D ¼ #X3ðX1;X2jX1Þ;

Lnom;3-D ¼ X3ðX1;X2jX1Þ ð2Þ

in which #X2 represents the median of X2; #X3 denotes the median of X3;
and ‘‘j’’ denotes a conditional sign (for example, #X2jX1 refers to the median
value of X2 given X1). The load factor, gL; in Eq. (1) will be appropriately different
for each of the nominal load definitions above in order to ensure that the design
checking equation leads to consistent reliability estimates in each case. In the
following, we use an example wind turbine and available field data, and then derive
and compare nominal wind turbine bending loads based on these three probabilistic
models.
It is possible to establish nominal loads by direct integration involving the

conditional short-term maximum load distribution (given inflow conditions) and the
joint density function of the inflow variables. For the right choice of Lnom;
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integration will lead to the desired target probability of failure, Pf ; as follows:

Pf ¼ P½X3 > Lnom� ¼
Z Z

X1;X2

P½X3 > LnomjX1;X2� fX1;X2ðx1; x2Þ dx1 dx2; ð3Þ

where fX1;X2 (x1;x2) is the joint probability density function of X1 and X2:
Using Eq. (3) to obtain the nominal load would provide the ‘‘exact’’ load but
would be computationally expensive in practical situations. Also, not much
would be learned about the inflow conditions that bring about this load. Inverse
reliability procedures, on the other hand, are approximate but less computationally
intensive and have an important advantage in that they offer useful insights into the
derived load and about the associated inflow conditions. In particular, we will use
the Inverse-FORM approach proposed by Winterstein et al. [3]. An overview is
presented next of how this method based on environmental contours works in the
current study.
Consider a sphere of radius equal to the target reliability index, b; in

an n-dimensional space describing independent standard normal variables,
one for each of the physical random variables in the problem of interest. If at any
point on this sphere, a tangent hyperplane were drawn, the probability of occurrence
of points on the side of this hyperplane away from the origin is Fð�bÞ; where F( )
refers to the Gaussian cumulative distribution function. Since each point on the
sphere is associated with the same reliability level, if the nominal load desired is also
for this same level, the points on the sphere can be systematically searched until the
largest nominal load is obtained. Transformation from the standard normal (U)
space to the physical random variable (X) space is necessary in order to obtain the
nominal load. This is achieved by using the Rosenblatt transformation [9]. In the
present study, a complete probabilistic representation of the random variables
requires that n is equal to 3. However, we shall see how only the 3-D model in Eq. (2)
retains all three random variables. The median value indicated in the definition of
Lnom;2-D in Eq. (2) is equivalent to forcing the variable U3 to be zero; and for
Lnom;1-D; it is equivalent to forcing the two variables, U2 and U3 to both be zero. This
has the effect of causing 2-D and 1-D models for Lnom to be obtained by reducing the
dimension of the random variable space and the 3-D sphere to a circle and a point,
respectively.
In summary, the 1-D model assumes that the 10-min mean wind speed, X1; is

random but neglects the variability in the standard deviation of the wind speed, X2;
and in the 10-min maximum response, X3: Thus, in U space, the n-dimensional
‘‘sphere’’ is a degenerate single point, u1 ¼ b; u2 ¼ u3 ¼ 0: Similarly, the 2-D model
assumes that only X1 and X2 are random; in U space, the n-dimensional ‘‘sphere’’ is a
degenerate circle, u21 þ u22 ¼ b2; u3 ¼ 0: The 3-D model treats all three variables as
random and is represented by the 3-D sphere, u21 þ u22 þ u23 ¼ b2: Geometric
representations for the three models are shown in Fig. 1. Because our target
reliability is specified in terms of a return period (equal to T years) associated with
the nominal load, Lnom; and since X3 is defined as the extreme value in ten minutes,
we need to determine the appropriate value of b to be used in the inverse-FORM
approach described by the 1-D, 2-D, and 3-D models. This is done by setting b ¼
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F�1ð1� Pf Þ where b and Pf are related to the target return period (T years)
and the number of ten-minute segments in T years. Assuming stationarity of the
wind speed time series over a duration of 10min as well as independence between
extremes in the various 10-min segments, the probability levels associated with any
specified return period may be calculated by using the number of the 10-min
segments that make up that time interval, say 20 years. This implies reference to
fractiles of the distribution of the individual 10-min extreme events that is somewhat
different from common practice where the return period event is defined directly in
terms of the annual extreme event. However, the definition employed here is
consistent in a similar fashion with the philosophy of the return period event. For the
three return periods studied here corresponding to 1, 20, and 50 years, the values of
Pf based on the aforementioned return period concept are 1:90	 10�5; 9:51	 10�7;
and 3:81	 10�7; respectively, and the corresponding values of b are 4.12, 4.76, and
4.95, respectively.

4. Numerical studies

The wind turbine considered in this study is a 600 kW stall-regulated
horizontal-axis turbine with three 21.5m long rotor blades and a hub
height of 44m. This turbine has been the subject of previous studies and is one
for which field data as well as extrapolated design loads have been derived by
Ronold and Larsen [7]. The probabilistic models for the short-term maximum
flapwise bending load and the environmental variables are used here with slight
changes in some parameters.
In the following, we briefly discuss the derived probabilistic models for the

random variables here. For more details related to the models and assumptions
regarding the distributions, the reader is referred to the work of Ronold and Larsen
[7]. As stated earlier, in the design for wind turbines it is typical to assume that the
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extreme blade bending load may be characterized by two gross inflow parameters
usually taken to be the 10-minute mean wind speed at the hub height, X1; and the
fluctuations around this mean wind speed represented by the standard deviation, X2

of the same wind speed process. To arrive at ultimate blade bending loads under
normal operating conditions, Ronold and Larsen [7] suggest representing the
distribution of the 10-min mean wind speed, X1; by a Weibull distribution whose
upper tail is truncated at the cut-out speed, uc (of 25m/s). This implies that the
present study is limited to situations where the turbine is in operating condition
always. This distribution for X1 and its parameters are illustrated in Table 1. For this
example, we assume that the wind turbine is located at a site where the distribution
of X1 has a scale parameter, A; equal to 6.77 m/s (corresponding to a mean value of
6m/s) and a shape parameter, k; of 2 (the distribution then becomes a truncated
Rayleigh). The other inflow parameter describing the gross environment is taken
here to be the standard deviation, X2; of the wind speed conditional on the ten-
minute mean wind speed, X1: This second inflow parameter may be represented
reasonably well by a lognormal distribution whose parameters, b0 and b1; both
functions of X1; and obtained based on experimental measurements, are presented in
Table1.
In addition to the two inflow parameters (X1 and X2), the turbine

response is characterized by the 10-min extreme flapwise bending moment,
X3; conditional on X1 and X2: The distribution of this random variable is
obtained on the assumption that the underlying non-Gaussian bending
moment process, W ðtÞ; may be characterized by its four statistical moments
(i.e., mean, mW ; standard deviation, sW ; skewness, a3W ; and kurtosis, a4W )
and that this non-Gaussian process (and its extremes, X3) may be mapped
to a related Gaussian process, UðtÞ; (and its own extremes, Y3) using a four-
moment Hermite transformation model [10]. Based on field data (see [7]), the
first two statistical moments (mW and sW ) and the zero-upcrossing rate, nW ;
of the flapwise moment, W ðtÞ; are represented as functions of X1 and X2 as
shown in Fig. 2 while the skewness, a3W ; and kurtosis, a4W are modeled as
constant values equal to �0.0066 and 2.8174, respectively. For a4W less
than 3, a four-moment Hermite transformation can be used to relate a
Gaussian process, UðtÞ; to the physical non-Gaussian process, W ðtÞ; by
expanding UðtÞ in terms of Hermite polynomials in W0ðtÞ and Hermite
moments, h3 and h4:

UðtÞ ¼ W0ðtÞ �
X4
n¼1

hnHn�1ðW0ðtÞÞ; ð4Þ

where W0ðtÞ ¼ ðW ðtÞ � mwÞ=sw and hn is the nth Hermite moment. Here, h1 ¼ h2 ¼ 0
since W0ðtÞ has zero mean and unit variance. Also, Hn( ) is the nth Hermite
polynomial. Hence, we can write Eq. (4) as follows:

UðtÞ ¼ W0ðtÞ � h3H2 W0ðtÞð Þ � h4H3 W0ðtÞð Þ

¼ W0ðtÞ � h3 W 2
0 ðtÞ � 1

� �
� h4 W 3

0 ðtÞ � 3W0ðtÞ
� �

ð5Þ
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Distributions and parameters for the random variables

Random Variable Distribution Parameters (adapted from Ronold and Larsen, 2000)

X1 (wind speed) Truncated

Rayleigh FX1 ðx1Þ ¼
1� exp½�ðx1=AÞk�

1� exp½�ðuc=AÞk�

A¼ 6:77m=s; k ¼ 2; uc¼ 25m=s

X2jX1 (std. dev. of

wind speed)

Lognormal
FX2 jX1 ðx2Þ ¼

F
lnx2 � b0ðx1Þ

b1ðx1Þ

� �
b0ðx1Þ ¼ mlnX2 jX1 ðx1Þ ¼ �2:1601þ 1:0326 lnx1

b1ðx1Þ ¼ slnX2 jX1 ðx1Þ ¼ 0:0579þ 0:6169 exp ð�0:1709x1Þ

mX2 jX1 ðx1Þ ¼ exp b0ðx1Þ þ 0:5b1ðx1Þ
2

� �
ðm=sÞ

s2X2 jX1 ðx1Þ ¼ exp 2b0ðx1Þ þ b1ðx1Þ
2

� �

 exp b1 x1ð Þ2

� �
� 1

� �
m=s
� �2

X3jX1;X2 (extreme flap

bending moment in ten

minutes)

Hermite model

based on four

moments

See Eqs. (6) and (7) for details. mW ¼ mW ðx1Þ; sW ¼ sW ðx1;x2Þ; and vW ¼ vW ðx1Þ are shown in Fig. 2.
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a4W¼ �0:0066

K
.

S
a

ra
n

y
a

so
o

n
to

rn
,

L
.

M
a

n
u

el
/

J
.

W
in

d
E

n
g

.
In

d
.

A
ero

d
y

n
.

9
2

(
2

0
0

4
)

7
8

9
–

8
0

4
7
9
6



One can also rewrite Eq. (5) by expressing W ðtÞ in terms of UðtÞ:

W ðtÞ ¼ f UðtÞð Þ ¼ mW þ sW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðtÞ2 þ k

q
þ cðtÞ

� �1=3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ k

p
� cðtÞ

� 
1=3
�a

" #
;

h3 ¼
a3W

6
; h4 ¼

a4W � 3
24

;

a ¼
h3

3h4
; b ¼ �

1

3h4
; k ¼ ðb � 1� a2Þ3;

cðtÞ ¼ 1:5b a þ UðtÞð Þ � a3: ð6Þ

Note that the mapping from U to W as expressed by the transformation in Eq. (6)
remains monotonic as long as dU=dW > 0; or equivalently as long as 16a23Wo9ð3�
a4W Þð5þ a4W Þ (see [11] for details). This inequality is satisfied for our problem since
we have a3W ¼ �0:0066 and a4W ¼ 2:8174 here. Note also that Eq. (5) should
actually use two different undetermined coefficients (say *h3 and *h4) than h3 and h4
but to first order (i.e., ignoring product terms such as *h3 *h4), those coefficients have
been solved for by Winterstein [10] and shown to be the same as the Hermite
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moments, h3 and h4: Improvements to these coefficients are possible by retaining
terms of higher order. To determine the distribution of the extreme, X3; of the
flapwise bending moment process, W ðtÞ; it is necessary to relate X3 to Y3; the
extreme of the Gaussian process, UðtÞ; where the distribution of Y3 may be given as
follows:

FY3 ðuÞ ¼ exp �nW T exp �
u2

2

� �� �
: ð7Þ

Once the distribution for Y3 is known, the distribution for X3 may be found using the
Hermite transformation model given by Eq. (6), i.e., X3 ¼ f ðY3Þ: Note that
dependence of X3 on X1 and X2 is implicit in the formulation above.

4.1. 1-D model

Here, only the 10-min mean wind speed, X1; is modeled as random, while the
standard deviation of wind speed, X2; and the 10-min maximum response, X3; are
held at their (conditional) median levels. Knowing the reliability index, b; associated
with a prescribed return period and failure probability, one can immediately obtain
the ‘‘point’’ corresponding to that failure probability in the standard normal (U)
space (see Fig. 1a) as follows:

u1 ¼ b; u2 ¼ 0; and u3 ¼ 0: ð8Þ

The design point related to the nominal bending load in physical random variable
space (X) may be obtained using the Rosenblatt transformation:

x1 ¼ F�1
X1

FðbÞ½ �; x2 ¼ F�1
X2 jX1

Fð0Þ½ �; and x3 ¼ F�1
X3 jX1;X2

Fð0Þ½ �: ð9Þ

From Eq. (9), it is clear that median values of X2 and X3 lead to the nominal loads.
This is illustrated graphically in Fig. 3, where, for example, the 20-year design load is
seen to be 420.8 kNm which is derived using a mean wind speed of 24.5 m/s and a
standard deviation of wind speed equal to 3.13m/s. Similar results for the other
return periods are also shown. Detailed results for all three return periods are
summarized in Table 2.

4.2. 2-D model

Randomness in both of the environmental variables, X1 and X2; is now modeled
while the load variable, X3; is still assumed deterministic at its (conditional) median
level. For a known reliability index, b; one can construct a ‘‘circle’’ in standard
normal (U) space (see Fig. 1b) as follows:

u1 ¼ bcos f; u2 ¼ bsin f; and u3 ¼ 0; for� ppfpp: ð10Þ

Since this circle lies in the plane, u3 ¼ 0; it is associated only with the
environmental random variables and hence it is termed an ‘‘environmental contour.’’
To obtain the design point, one needs to search the entire circle (by considering all
values of the angle f between – p and p) so as to find the largest median response
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value for X3: Applying the Rosenblatt transformation yields the design point in X
space:

x1 ¼ F�1
X1

Fðbcos fÞ½ �; x2 ¼ F�1
X2 jX1

Fðbsin fÞ½ �; and x3 ¼ F�1
X3 jX1;X2

Fð0Þ½ �: ð11Þ

Every point on the environmental contour is such that the probability on the side
of a tangent hyperplane at that point (away from the origin) is the same. However,
each point is associated with a different ‘‘median’’ response. As shown in Fig. 4, for a
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Fig. 3. Procedure to estimate extreme loads based on the 1-D model: (a) evaluating X1 for a specified

return period; (b) evaluating #X2 given X1; and (c) evaluating #X3 given X1 and #X2 .

Table 2

Results summarizing design points from the 1-D, 2-D, and 3-D models for three return periods

Return Period (yr) 1-D 2-D 3-D

X1

(m/s)

X2

(m/s)

X3

(kNm)

X1

(m/s)

X2

(m/s)

X3

(kNm)

X1

(m/s)

X2

(m/s)

X3

(kNm)

1 22.7 2.84 402.6 22.0 2.95 404.2 21.3 2.83 410.5

20 24.5 3.13 420.8 24.1 3.33 423.8 23.1 3.12 436.8

50 24.8 3.17 423.3 24.4 3.44 427.7 23.5 3.17 444.0
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20-year return period, Eq. (11) maps the contour in U space to different
median levels of response, whose maximum value is 423.8 kNm which is
associated with a mean wind speed of 24.1m/s and a standard deviation
of wind speed equal to 3.33m/s. The nominal bending load for this 2-D
model can also be obtained by plotting separate iso-response curves of
median values of X3 together with the 2-D environmental contour in X space and
locating the iso-response curve of highest value that intersects the 2-D environmental
contour. It should be noted that the environmental contours and the iso-response
curves may be constructed independently; hence, these contours are not turbine-
specific. The turbine response/load is uncoupled from the environment. Environ-
mental contours as well as iso-response curves are plotted in Fig. 5 from which it
may be seen that the nominal loads are 404.2, 423.8, and 427.7 kNm, respectively,
for 1-, 20-, and 50-year return periods. Detailed results for all three return periods
are summarized in Table 2.

4.3. 3-D model

Randomness in all three random variables, X1; X2; and X3 is now modeled. For a
known reliability index, b; one can construct a sphere in standard normal (U) space
(see Fig. 1c) as follows:

u1 ¼ bsin f sin y; u2 ¼ bcos f; and u3 ¼ bsin f cos y; for� ppfpp;

0pypp: ð12Þ

To obtain the design point, one needs to search the entire sphere (by
considering all values of the angle f and y) so as to find the largest response
value for X3: Applying the Rosenblatt transformation yields the design point
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Fig. 4. Median response surface, 20-year environmental contour, and design point.
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in X space:

x1 ¼ F�1
X1

Fðbsin f sin yÞ½ �; x2 ¼ F�1
X2 jX1

Fðbcos fÞ½ �; and

x3 ¼ F�1
X3 jX1;X2

Fðbsin f cos yÞ½ �: ð13Þ

As shown in Fig. 6, for a 20-year return period, Eq. (13) maps the sphere in U space
to different levels of response, X3—the maximum value of response is found to be
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436.8 kNm; for the 1-year return period, this maximum response is 410.5 kNm.
Detailed results for all three return periods are summarized in Table 2.

4.4. Discussions and a proposed modified 2-D model

The three models presented above lead to different nominal loads as is seen in
Table 2. In the table, it is seen that as would be expected, the nominal load levels
increase with return period. For any return period, it is seen that the 1-D and 2-D
models yield very slightly different loads; this is because the variable, X2; the
standard deviation of wind speed, is relatively unimportant compared to the mean
wind speed, X1: For the 20-year return period, the difference in nominal loads is only
about 0.7%. Greater differences are seen when the 3-D model is considered where
short-term response uncertainty is included. The 3-D model 20-year loads are about
3% higher than the 2-D loads. While for this particular problem, the difference
between the 3-D model and the simpler models is small, this may not be the case
when response variability (conditional on inflow) is large.
The 2-D model is of special interest because it uncouples the environment from the

response. This is especially convenient when considering the same turbine in different
environment conditions as well as when considering alternative turbines for a
specified environment. Moreover, a modified 2-D model that employs omission
factors (Madsen, 1988) to derive higher-than-median fractiles of U3 (and hence X3)
can, with few additional calculations that follow a 2-D model analysis, reduce the
error relative to the 3-D model. Results from such a 2-D modified model are
summarized in Table 3 where the FORM direction cosine, a3; which is related to the
importance of the response variable, was obtained by only computing a local
gradient of the limit state function in the direction of U3 (at the 2-D model design
point). Fig. 7 shows nominal load levels from all four models where it is clear that
there is now negligible difference between the loads derived from the modified 2-D
model and those from the 3-D model.

5. Conclusions

We have presented a procedure to establish nominal loads for the design of wind
turbines against ultimate limit states. Three alternative load models (termed 1-D, 2-
D, and 3-D models) were compared. An inverse reliability approach was employed
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Table 3

Modified 2-D model results for three return periods

Return Period (yr) Direction cosine, a3 Modified fractile for U3 X3 (kNm)

1 0.26 0.71 409.9

20 0.45 0.87 437.7

50 0.51 0.91 445.5
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to estimate nominal design loads. For the 600 kW wind turbine considered, the
environmental and response probabilistic descriptions were obtained from a study
by Ronold and Larsen [7]. Extreme flapwise bending loads were studied and, for this
turbine, it was found that the difference between the nominal loads derived from 1-D
and 2-D models was very small since the standard deviation of wind speed at the hub
height had a very small effect on the extreme bending load compared with the mean
wind speed. Including uncertainty in the short-term maximum bending load
conditional on inflow (in the 3-D model) caused somewhat higher loads than in
the 1-D and 2-D models. The modified 2-D model that uses higher-than-median
fractiles (derived by some additional calculations following the 2-D analysis) for the
short-term response conditional on inflow was able to yield almost similar nominal
loads as were obtained with the 3-D model.
The results presented were for a specific wind turbine, and conclusions drawn from

this study are by no means generally applicable to other wind turbines or for other
environmental conditions. However, the procedures outlined may be employed in
any situation where the objective is to establish nominal loads for the reliability-
based design of wind turbine components.
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