
Towards an Improved Understanding 
of Statistical Extrapolation for Wind 
Turbine Extreme Loads
Jeffrey Fogle, Puneet Agarwal and Lance Manuel*, Department of Civil, Architectural and Environ-
mental Engineering, University of Texas, Austin TX 78712, TX, USA

One of the load cases that must be evaluated per the International Electrotechnical Com-
mission standard for wind turbine design requires that characteristic loads associated with 
a 50-year return period be established. This is usually done by carrying out aeroelastic 
response simulations of the turbine. In order to estimate such rare loads, extreme loads 
data of adequate quantity and quality are required to facilitate robust predictions. Practi-
tioners have expressed concerns about aspects of the load extrapolation—for instance, 
questions have arisen related to the minimum number of required ten-minute turbine 
response simulations, about whether only a single (global) maximum load from each sim-
ulation should be saved or whether, alternatively, several time-separated (block) maxima 
are preferred. Also, though turbine load types are not influenced by each wind speed 
between cut-in and cut-out to the same degree, focused simulation effort on winds that 
control the largest loads for each load type is not addressed. Using global and block 
maxima for four load measures from aeroelastic simulations on a 5 MW turbine model, we 
study short-term load distributions as a function of wind speed. Block maxima for different 
block sizes (time separations) are tested for independence and empirical load distributions 
for global and block maxima are compared. We present a proposal for addressing load 
extrapolation that focuses on efficiency, that spells out how to employ either global or 
block load maxima, and that provides convergence criteria for deciding on an adequate 
number of simulations that must be performed before attempting long-term load 
prediction using extrapolation. Copyright © 2008 John Wiley & Sons, Ltd.

Received 29 April 2008; Revised 27 September 2008; Accepted 30 September 2008

WIND ENERGY
Wind Energ. 2008; 11:613–635
Published online in Wiley Interscience 
(www.interscience.wiley.com) DOI: 10.1002/we.303

Research 
Article

* Correspondence to: L. Manuel, Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin 
TX 78712, TX, USA
E-mail: lmanuel@mail.utexas.edu
Contract/grant sponsor: Sandia National Laboratories (contract no. 743378). Contract/grant sponsor: National Science Foundation 
(grant nos. CMMI-0449128 and CMMI-0727989).

Key words: 
statistical loads 
extrapolation; 
wind turbine loads; 
simulation; 
global maxima; 
block maxima

  

Copyright © 2008 John Wiley & Sons, Ltd.

Introduction

Statistical extrapolation of wind turbine loads from limited simulations is required in order to predict 
rare long-term loads associated with an important design load case (DLC) specifi ed in the International 
Electrotechnical Commission (IEC) standard for the design of wind turbines (IEC 61400-1, Edition 3, 
2005).1 A response simulation represents the stochastic response of a wind turbine to specifi ed random 
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environmental conditions. Each DLC specifi es the environmental conditions to be used for the aeroelastic 
simulations. One particular load case, DLC 1.1, will be the focus of our discussions; therefore, a brief 
background about it is appropriate here. DLC 1.1 deals with extreme loads that a wind turbine might experi-
ence during normal operations—when wind speeds range between cut-in and cut-out. DLC 1.1 also specifi es 
that infl ow conditions used in the simulations should represent those associated with near-neutral atmospheric 
conditions. A normal turbulence model (NTM) is prescribed in the IEC standard that must be used to represent 
the infl ow turbulence fi elds pertinent to DLC 1.1. In this load case, the hub-height wind speed, V, averaged 
over 10 min may be treated as a single random variable representing the environment; in the IEC standard, 
turbulence intensity needed for the NTM is specifi ed in terms of this wind speed, depending on the class for 
which the turbine design is considered. DLC 1.1 requires that aeroelastic simulations be conducted over the 
entire power-producing wind speed range from cut-in to cut-out. It is convenient, as the IEC standard permits, 
to carry out simulations over discrete wind speed intervals or bins; typically, bins of 2-m/s size for V are 
employed.

As DLC 1.1 relates to an ultimate limit state for design, it requires that a ‘characteristic’ load be established 
that has a low probability of occurrence. The standard states that this characteristic load must have a 
return period of 50 years or, equivalently, that this load may be exceeded on average only once every 50 
years.1 We will refer to this characteristic load as the 50-year load in the following. It is clear that prediction 
of the 50-year load needs to recognize the various wind speeds that will be encountered and their 
relative likelihoods. If load statistics or distributions are established separately for each wind speed bin, 
it is important that a suffi cient number of simulations are carried out for each bin, and that aggregation and 
proper weighting of loads from each bin are also done correctly. Clearly, it is computationally infeasible 
to carry out the large number of 10-min simulations that would be needed to accumulate loads data, which 
account for the actual duration that would match the target return period. Instead, a limited number of simula-
tions are generally carried out; effort, though, must be judiciously expended in running simulations 
most carefully for wind speed ranges that bring about the largest loads as well as the most variable ones. 
Careful statistical extrapolation from such limited simulations can then make it possible to derive the 
required 50-year loads.

In this study, we address some concerns that have been raised with regard to experiences practitioners 
have had with attempts to address DLC 1.1 in the IEC standard.1 The standard requires that the 50-year 
load be established but it does not unambiguously provide a procedure that will lead to this load from simula-
tions. The guidelines that are provided are vague at best, for example, when addressing the issue of 
what represents a suffi cient number of simulations to run. There are also no clear indications of what constitutes 
a check that the 50-year load when derived is a robust or stable estimate. The standard does not explicitly 
suggest that effort might best be focused on the most important bins (usually at or around rated wind 
speeds for some load types and at or around cut-out wind speeds for others), although this would be prudent. 
Finally, the standard does not clearly describe what extreme load statistics may be saved from each 10-min 
simulation—the use of a single (global) maximum from each simulation needs to be considered against 
alternatives that utilize several time-separated (block) maxima from each simulation; in the latter, the question 
of what constitutes a set of independent block maxima is important as it fundamentally affects the derivation 
of the 50-year load. The standard allows use of multiple maxima by methods such as the peak-over-threshold 
procedure but details are missing with regard to robust tests for independence. In this study, we address 
each of these issues. In brief, we address: effi ciency when we discuss which wind speed bins are design 
drivers for each load; convergence criteria that lead to approaches to quantify when an adequate number of 
simulations have been run that yield stable short-term empirical load distributions; and the issue of indepen-
dence in block sizes and statistical tests for independence, and also discuss the difference in load predictions 
based on the use of global and block maxima. Throughout, insights are provided to guide the effort involved 
in carrying out statistical loads extrapolation as required for DLC 1.1. Although we have highlighted 
several issues related to loads extrapolation and suggested that these are limitations of the IEC standard, 
a fairer assessment needs to recognize that industry standards and guidelines are rarely suffi ciently detailed 
so as to provide a recipe-like approach to what is required to derive design loads. Rather than viewing 
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the present study as an attempt to address limitations, it might be better to characterize our work as an 
attempt to address known issues that practicing engineers are facing with one load case in the IEC 
standard.

This work represents our continuing effort to improve understanding of statistical loads extrapolation as it 
applies to wind turbine design. The load simulation data sets used in this study were provided to the authors 
as well as to other members of a loads extrapolation evaluation exercise (LE3) working group that was formed 
at the request of the maintenance committee of the IEC 61400-1 turbine design standard. The simulated loads 
data sets were generated for a baseline 5MW wind turbine model developed at the National Renewable Energy 
Laboratory (NREL). All of the fi ndings that are reported here are based exclusively on statistical studies on 
data from simulations with this turbine model alone.

The LE3 Data Set
The LE3 working group was constituted in order to address ongoing issues related to the IEC standard and, 
particularly, DLC 1.1 that deals with statistical loads extrapolation from limited simulation. The LE3 working 
group approved a proposal to develop a database of simulated load time histories and summary statistics from 
a 5MW turbine model developed by NREL. This model is based on an onshore version of NREL’s baseline 
turbine model developed to represent a utility-scale 5MW offshore wind turbine2; this onshore model has 
identical properties to the offshore turbine above the mudline. The turbine has a hub height of 90 m and a 
rotor diameter of 126 m. The machine is a variable-speed, collective pitch-controlled turbine with a rated wind 
speed of 11.5 m/s. The maximum rotor speed is 12.1 rpm. Moriarty3 provides a detailed account of the turbine 
model and the various infl ow conditions covered by the simulations. Infl ow turbulence was simulated using 
TurbSim v12.04; a Kaimal power spectrum, a shear exponent of 0.20 and a deterministic turbulence standard 
deviation (given V) were employed based on the NTM. The program, FAST v6.02b,5 was used to carry out 
aeroelastic simulations for hub-height wind speeds, V, varying between cut-in and cut-out wind speeds. For 
the IEC Class I-B site assumed, the 10-min hub-height wind speed follows a standard Rayleigh distribution 
with mean equal to 10 m/s.

Two data sets were generated for use by the LE3 working group. The fi rst data set consists of 1200 10-min 
simulations for each of the 12 wind speeds ranging from 3 to 27 m/s, yielding a total of 14,400 different load 
time series (when running TurbSim to generate infl ow turbulence time histories, the target wind speeds were 
set at discrete values of 3, 5 m/s, etc., up to 25 m/s, and were assumed to represent 2-m/s bins centered at the 
target values; realized 10-min average wind speeds varied slightly from the target values). A second data set 
was generated by representing wind speeds according to a Rayleigh distribution for fi ve full years and then 
carrying out aeroelastic response simulations for those infl ow conditions.

In the present study, four representative and contrasting loads were analyzed from the fi rst LE3 data set. 
These loads include the out-of-plane bending moment (OOPBM) at a blade root, the out-of-plane blade tip 
defl ection (OOPTD), the fore-aft tower bending moment (FATBM) at the base and the in-plane blade bending 
moment (IPBM) at a blade root.

Statistical Load Extrapolation
The fi rst step in statistical load extrapolation involves the identifi cation of load extremes from the turbine 
simulations. Consider the case where the single largest (global) maximum is extracted from each 10-min 
time series for a wind speed bin, Vk. The probability, P(L > lVk), that a given load of interest, L, will exceed 
any specifi ed load level, l, in 10 min may be estimated by rank-ordering the Nk real-valued global maxima 
(Xi; i = 1 to Nk) that are obtained by running Nk simulations for wind speed bin, Vk. In practice, once the load 
level, l, is specifi ed, if it lies within the range of the observed loads, one can obtain the empirical short-term 
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conditional distribution by fi nding two integers j and j + 1 that are such that where Xj ≤ l ≤ Xj+1 where 1 ≤ j ≤ 
(Nk − 1). As P(L ≤ XjVk) = j/(Nk + 1) and P(L ≤ Xj+1Vk) = (j + 1)/(Nk + 1), one can obtain P(L > lVk) = 1 
− nk(l)/(Nk + 1) where nk(l) is obtained by interpolation. For values of l outside the range of the observed loads, 
extrapolation may be used. In summary, the empirical short-term load distribution for any bin, Vk, may be 
estimated as follows:

 

P L l V
n l

N
n l j

l X

X X
X l Xk

k

k
k

j

j j
j j>( ) = −

( )
+

( ) = +
−

−
≤ ≤

+
1

1 1

; where  , if ++ ≤ ≤ −

=
+

<

=
+

>

1

1

1 1

1

1

1

and

if 

if 

j N

N

N
l X

N
l X

k

k

k

k
Nk

;

;

 (1)

Figure 1 shows example empirical short-term distributions for two loads, OOPBM and OOPTD, estimated 
using global maxima from 200 simulations in each wind speed bin.

The distribution given by equation (1) is termed a short-term distribution on the global maximum load, L, 
as it is a distribution conditional on wind speed. All the various wind speeds likely to be encountered need to 
be considered in order to yield the long-term distribution on L. In terms of a continuous random variable, V, 
the long-term distribution can be obtained as follows:

 P L l P L l V v f v dv
V

V
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To evaluate equation (2) in order to obtain long-term distributions for turbine loads, one needs short-term 
distributions as well as the wind speed probability density function, fV(v); the latter is taken to be the Rayleigh 
density function for IEC Class I-B conditions in this study and only the mean value of V of 10 m/s is needed. 
One can use equation (2) to obtain the long-term load distribution for loads if parametric distribution fi ts are 
attempted to each empirical short-term distribution given by equation (1). This might be termed the ‘fi tting-
before-aggregation’ approach.

Figure 1. Example empirical short-term empirical distributions for OOPBM and OOPTD estimated using 200 
simulations for each wind speed bin
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Alternatively, one could obtain the long-term distribution by collecting data from all the wind speed bins 
together (this can be conceived of as putting all the data into one box). Assuming that the maxima in bin i are 
rank-ordered such that if there are total of Ni extremes, then l1,1 ≤ l1,2 ≤ l1,3  .  .  .  ≤ l1,N, the notation used implies 
that li,k is the kth rank-order maximum from bin i. Note that the total number of load maxima from all bins, N, 

is equal to Ni

i

NB

=
∑

1

, where NB is the number of wind speed bins. If the number of simulations run in each bin is 

proportional to the actual likelihood of that bin, then the empirical long-term distribution may be estimated 
simply as follows:
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Note that equation (3) provides an empirical expression for the long-term distribution of the global maximum 
of 10-min maximum load, L. This distribution can be used to derive the 50-year load by noting that this load 
has a return period of 50 years. If one assumes independence between global 10-min maxima, the desired 50-
year load, l50, must be such that the probability of its exceedance in 10 min is 10 min / (50 years × 365.25 d/year 
× 24 h/day × 60 min/h) = 1/2,629,800 = 3.8 × 10−7. Clearly, in order to predict loads with such low probabil-
ities of exceedance, statistical extrapolation will be necessary from the limited simulations that will be carried 
out.

It is worthwhile to note that in the ‘aggregation-before-fi tting’ approach suggested by equation (3), as the 
data are more heterogeneous as they represent different wind speed bins, parametric fi ts can focus on the tails 
of the empirical data. Extrapolation to the desired 50-year return period level can follow directly with either 
of the two approaches. Ragan and Manuel6 provided examples of the use of generalized extreme value distri-
bution fi ts to fi eld data on loads (global maxima) from a utility-scale wind turbine based on the ‘fi tting-before-
aggregation’ approach. The small amounts of data usually available in empirical short-term data often lead to 
fi ts of poor quality;6 moreover, such fi ts are needed for all wind speed bins even where loads are not large. 
The alternative ‘aggregation-before-fi tting’ approach involves fi tting to distributions only on long-term loads; 
aggregated data are generally larger in number and given that large rare loads are of interest, fi tting can be 
concentrated in the tail that is most useful for extrapolation.

The Relative Importance of Different Wind Speeds to Turbine Load Extremes
To compare the relative importance of different wind speed bins on load extremes, it is of interest to study 
load extreme statistics as a function of wind speed. With a little effort (i.e. limited simulations), it is often 
possible to identify which wind speeds can cause the largest turbine loads on average and, equally important, 
which ones show the greatest load variability. The largest loads are associated with the lowest probability of 
exceedance and, as such, are closest to the rare probability levels to which extrapolation is needed; the wind 
speeds where these largest loads occur are therefore of obvious interest. Empirical short-term distributions 
need to be well estimated in these bins in particular. Even if loads realized in some bins are not among the 
largest, if variability in extremes from simulations in those bins is large, they can have a signifi cant infl uence 
on distribution tails and, hence, on extrapolation.

From Figure 2, it is possible to identify those wind speed bins associated with the largest loads and greatest 
short-term extreme variability, and also to identify those bins that most infl uence the tails of the long-term 
load distributions. This is useful as summary plots such as these make it possible to focus efforts in the most 
important bins. For OOPBM and FATBM, important controlling wind speed bins are in the 14–22 m/s range 
with perhaps the dominant winds being closest to the 14–16 m/s bin. The OOPTD is controlled by somewhat 
lower wind speeds; the largest loads occur between 10 and 16 m/s. The IPBM is clearly dominated by wind 
speeds close to the cut-out wind speed of 25 m/s. Although these controlling wind speed bins were identifi ed 
by carrying out 200 simulations per bin, it is possible to identify important bins with considerably less simu-
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lation effort. From Figure 2, it is clear that wind speeds below 10 m/s do not contribute large loads to any of 
the four loads types discussed; moreover, they also do not exhibit large variability in load extremes. In carry-
ing out simulations with a view towards extrapolation, it is worthwhile to understand turbine load extremes as 
a function of wind speed in this manner to avoid excessive computational effort.

Block Maxima and the Issue of Independence
An alternative to the use of only a single maximum (i.e. the global maximum) from each simulated 10-min 
time series is to extract several extremes from each time series in a systematic manner. Although this can be 
done by methods such as the peak-over-threshold procedure,6 there are simpler methods as well. For instance, 
one could split or partition the time series into individual non-overlapping blocks of constant duration. From 
each of these blocks, then, a single largest value is extracted; together these extracted extremes constitute a 
set of block maxima. Figure 3 shows an example OOPBM load time series with 1-min block maxima indicated 
by circles and the a single 10-min global maximum indicated by an asterisk.

Figure 3 indicates that from a single load time series of 10-min duration, more extremes data may be 
extracted if block maxima are employed as opposed to global maxima in extrapolation. As long as the n block 

Figure 2. Distribution of short-term load maxima as a function of wind speed for four loads, OOPTD, FATBM, 
OOPBM and IPBM, based on 200 simulations per wind speed bin
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maxima in a 10-min sample can be shown to be mutually independent, short-term global maxima (L) distribu-
tions as in equation (1) can be related to short-term block maxima (Lblock) distributions as follows:

 P L l V P L l V F l V F l Vk block k
n

L k L k
n

block<( ) = <( )[ ] ( ) = ( )[ ]or  (4)

where FL( ) and FLblock
( ) refer to the cumulative distribution functions for L and Lblock, respectively.

In terms of probabilities of exceedance of any load level, l, one can also write:

 P L l V P L l Vk block k
n>( ) = − − >( )[ ]1 1  (5)

If one is interested in the p-quantile 10-min maximum load, lp, defi ned such that FL(lVk) = p, the adjusted 
load quantile in terms of the block maximum distribution must be adjusted as follows:

 l F p F pp L L
n

block= ( ) = ( )− −1 1 1  (6)

where n represents the number of blocks contained in 10 min. As might be expected, the non-exceedance 
probability, p, for global maxima needs to be adjusted to a rarer non-exceedance probability level, p1/n, for 
block maxima, if it is to correspond to the same load. So, although a greater amount of extremes data are 
extracted when block maxima are employed and hence lower exceedance probability levels can be empirically 
estimated, the same p-quantile load needs to be sought farther in the tail of the block maxima distribution. For 
instance, if the 80th percentile 10-min maximum load is required (which corresponds to a non-exceedance 
probability of 0.80 for global maxima) when 1-min block maxima are used, the corresponding non-exceedance 
quantile for block maxima is 0.801/10 or 0.978 that is considerably farther in the tail of the distribution of the 
block maxima. Figure 4 illustrates this effect for OOPBM load maxima extracted from six simulations of a 
single wind speed bin. The asterisks represent block maxima, and the circles represent the global maxima. To 
highlight the point that the global maxima are also block maxima, the specifi c global maxima extracted are 
shown twice to indicate where they appear in the block maxima distribution. Some extracted block maxima 
are higher than a few global maxima and arguably better defi ned tail trends are seen in the block maxima 
distribution. However, as can be seen, the 80th percentile 10-min maximum load corresponds to an exceedance 
probability level of (1 − 0.978) or 0.022 if the block maxima distribution is used. In this case, the actual 80th 
percentile load itself is read off at roughly the same level with either choice of distribution.

As was stated before, equations (4)–(6) are valid as long as block maxima selected from each time series 
are independent of each other. Intuitively, it may be expected that smaller block sizes will lead to greater 

Figure 3. Example OOPBM load time series showing global and block maxima
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dependence among the extracted block maxima. Statistical tests for independence represent the only objective 
means of assessing the extent of independence or lack thereof in a sample of block maxima from load 
simulations.

Test for Independence
Several tests to evaluate independence between two random variables are available in the literature. We focus 
here on a test proposed by Blum et al.7 Details related to this test along with examples may be found in Hol-
lander and Wolfe;8 that reference also provides a correction for a typographical error in an equation in Blum 
et al.7 Blum’s test has been used by Skaug and Tjøstheim9 to test for independence in time series data, for 
which it was not originally developed.

Two random variables, X and Y, may be stated to be independent of one another if the product of their 
marginal probability distribution functions is equal to their joint distribution. According to Blum’s test for 
independence, the null hypothesis, H0, is that the two variables X and Y are independent. Thus, we have in 
terms of cumulative distribution functions:

 H F x y F x F yX Y X Y0 : ,, ( ) = ( ) ( )  (7)

Blum’s test makes use of a test statistic, B, that must be checked against a critical value, Bcr, at any specifi ed 
signifi cance level. This test statistic is computed as follows:

 B N
N j N j N j N j
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5
1
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where N is the sample size for both X and Y. The quantities, N1( j) to N4( j), are computed for all values of j 
from 1 to N or effectively for all choices of (X, Y) = (xj, yj) such that

• N1( j) is the number of (x, y) pairs such that x ≤ xj and y ≤ yj.
• N2( j) is the number of (x, y) pairs such that x > xj and y ≤ yj.
• N3( j) is the number of (x, y) pairs such that x ≤ xj and y > yj.
• N4( j) is the number of (x, y) pairs such that x > xj and y > yj.

Figure 4. Comparison of block and global maximum probability levels associated with a given load quantile for 
OOPBM loads (in MN-m)
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If the value of B as computed by equation (8) is greater than Bcr, then the null hypothesis is rejected and the 
two variables, X and Y, are not independent at the specifi ed signifi cance level.

Useful illustrative examples of the use of this test involve examining this B statistic for paired data that are 
known to be either strongly dependent or independent. Note that for a bivariate Gaussian distribution, zero 
correlation implies independence (the distribution is completely defi ned by a correlation coeffi cient and the 
fi rst two marginal moments of each variable). If Blum’s test is carried out for two jointly distributed Gaussian 
random variables that are strongly correlated, the B statistic is likely to be large; the opposite is true if the 
correlation is weak.

Variables, X and Y, assumed jointly Gaussian with a correlation coeffi cient of 0.9, were simulated; a scatter 
plot of the data is shown in Figure 5(a). Note that for any (xj, yj) pair that is part of this data set (where by 
design, X and Y, are strongly correlated and, thus, dependent), the values of N1 and N4 are generally much 
larger than N2 and N3; hence, the computed B value is large. For this case, B is equal to 31.8, which is much 
larger than the critical value, Bcr, of 4.23 at a 1% signifi cance level. Hence, the independence (null) hypoth-
esis is rejected. Another extreme case is considered where the variables, X and Y, assumed jointly Gaussian 
with a correlation coeffi cient of 0.05, were simulated; a scatter plot of the data is shown in Figure 5(b). Note 
that for any (xj, yj) pair that is part of this data set, this time, the values of N1 and N4 are generally of similar 
magnitude to those of N2 and N3; hence, the computed B value is relatively smaller than in the previous case. 
For this case, B is equal to 2.10, which is smaller than the critical value, Bcr, of 4.23 at a 1% signifi cance level. 
Hence, the null hypothesis of independence is not rejected. These two examples serve to illustrate the use of 
Blum’s test for independence between two random variables in general.

The independence of block maxima of wind turbine loads for different block sizes may be studied in a 
similar manner to that used in the preceding illustrative example. Blum’s test statistic, the B value, for block 
maxima may be computed by forming lag-one vectors, X and Y, from all the block maxima in each 10-min 
time series. The B value may be computed for these lag-one extremes to test if they are independent. It is 
expected that these extremes will become more independent as the block size is increased. At a certain optimum 
block size, computed B values will fall below the critical value, Bcr. Although it is possible to study the B 
values for each simulation corresponding to a given wind speed, it is more instructive to study these B values 
(and, thus, independence) statistically as a function of block size by considering multiple simulations for each 

Figure 5. Scatter plot of simulated samples of two bivariate Gaussian random variables with correlation coeffi cients of 
(a) 0.9 and (b) 0.05. Also indicated are the values of N1, N2, N3 and N4 for (xj, yj) equal to (-0.260, +0.027) and 

(+0.034, -0.120), respectively, for correlation coeffi cients of 0.9 and 0.05, as computed while carrying out Blum’s test 
for independence
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wind speed; this makes it possible to account for scatter or uncertainty in the B values over different simula-
tions. To this end, the mean, mB, and standard deviation, sB, of the B values from 200 simulations are computed 
for four different load measures: OOPBM, FATBM, OOPTD and IPBM. Note that even with a small number 
of simulations, on the order of 15 to 20, statistics of the B values are quite stable and 200 simulations are not 
really needed. The mean B values with error bars representing one standard deviation are shown in Figure 6 
for the four load types and for three different wind speed bins: 10–12, 16–18 and 22–24 m/s. As expected, 
mean values of B decrease monotonically with increasing block size. Even if the more stringent (mB + sB) level 
is checked against the critical value, Bcr, at the 1% signifi cance level, independence of block maxima is virtu-
ally assured for block sizes longer than 30 s for all four load types and in all three wind speed bins. Summarized 
in Table I are the appropriate block sizes for independence based on criteria where either mB or (mB + sB) values 
are compared with Bcr at the 1% signifi cance level. Clearly, for a given block size, load maxima in some wind 
speed bins (e.g. the lower wind speed bins) exhibit greater dependence than in but it appears that—at least for 
this LE3 loads data set—one could safely choose block sizes of around 40–60 s, extracting between 10 and 15 
extremes (block maxima) from each 10-min time series and use these extremes to establish short-term load 
distributions.

Figure 6. Variation of Blum’s test B statistic for four loads as a function of block size (computed from 200 10-min time 
series for each load type and in three wind speed bins)
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Discussion on Independence
Returning to our earlier discussion on the matter of which wind speed bins bring about the largest loads, it 
was suggested that lower wind speeds contribute almost no useful information to the tails of long-term load 
distributions. As such, increasing block sizes to ensure independence in these low wind speed bins offer no 
benefi t to our ultimate goal of statistical loads extrapolation. Table II shows that if only the most important 
wind speed bins are considered (the ones that cause the largest loads), maxima from block sizes as short as 
10, 10, 15 and 15 s, respectively, may be considered acceptably independent for OOPBM, FATBM, IPBM 
and OOPTD (based on comparing mB levels from 20 simulations versus the 1% signifi cance level Bcr value of 
4.23).

It is instructive to see how a simpler statistical measure, such as the sample correlation coeffi cient between 
lag-one extremes, X and Y, used before in the independence test, varies as the block size is changed. Such 
measures are easier to use than the Blum’s test for independence described above; this makes them appealing 
for studying independence. However, it is important to note that an indication of lack of correlation does not 
guarantee independence. Nevertheless, sample correlation coeffi cients of lag-one block maxima (averaged over 
20 simulations) for four load types and for the most important wind speed bins for each load are presented in 
Table III. It is clear that sample correlation coeffi cient values on lag-one block maxima, as was the case with 
B values, generally decrease with increasing block size. However, no obvious acceptable correlation coeffi cient 
level on lag-one extremes can be claimed as a demarcation point for accepting lack of correlation among block 

Table I. Suggested block sizes (in seconds) for independent block maxima based on mean (mB) and mean plus one 
standard deviation (mB + sB) values from 200 simulations and tested at the 1% signifi cance level.

Wind speed (m/s) OOPBM FATBM IPBM OOPTD

mB (mB + sB) mB (mB + sB) mB (mB + sB) mB (mB + sB)

2 < V < 4 50 70 30 50 30 60 50 70
4 < V < 6 40 60 25 40 40 60 40 60
6 < V < 8 40 60 30 50 30 50 40 60
8 < V < 10 40 50 40 50 25 40 40 50
10 < V < 12 15 20 20 25 20 30 15 20
12 < V < 14 20 30 20 30 15 20 25 40
14 < V < 16 20 30 20 30 15 20 20 30
16 < V < 18 15 25 15 25 15 20 20 25
18 < V < 20 15 20  6 15 10 15 15 25
20 < V < 22  7 20  5  6  9 15 15 20
22 < V < 24  7 15  4  5  8 15 15 20
24 < V < 26  6 15  4  5  7 15 15 20

Table II. Average values of B computed using block maxima with different 
block sizes based on 20 simulations of four different loads for the most 

important wind speed bins

Block size (s) OOPBM FATBM IPBM OOPTD

16 < V < 18 16 < V < 18 24 < V < 26 16 < V < 18

5 9.65 6.91 8.37 18.50
10 4.19 3.72 4.52 6.42
15 3.18 2.73 2.31 3.81
20 3.15 2.95 1.90 3.19
30 2.15 2.12 1.79 2.34
60 1.34 1.39 1.33 1.53

The critical value, Bcr, at the 1% signifi cance level is 4.23.
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maxima. Although no attempt is made to address this issue, it can be seen that for the optimum block lengths 
needed to accept the independence criterion at the 1% signifi cance level based on Blum’s test (see Table II), 
correlation coeffi cients are estimated to be 0.33, 0.32, 0.17 and 0.35 for OOPBM, FATBM, IPBM and OOPTD, 
respectively. Thus, one could make a general observation, at least based on this LE3 loads data set, that if 
correlation coeffi cients are about 30% or smaller between lag-one block maxima, then the block sizes selected 
lead reasonably well to independent block maxima. Note, however, that there is no implied direct relation—
theoretical or empirical—between B values from Blum’s test for independence and sample correlation 
coeffi cients.

It has already been established that independence of block maxima is required for the mathematical relation-
ships expressed in equations (4)–(6) to hold. However, it is also important and perhaps more useful to discuss 
what effect, if any, the assumption of independence (whether or not it is justifi ed) has on extrapolated loads. 
One can study, for example, what effect the assumption that a given block size assures independence has on 
the tails of short-term load distributions. Table IV shows estimates of the 84th percentile global maximum 
load for four load types obtained using block maxima distributions along with the fractile adjustment given 
by equation (6). Block sizes are varied from 5 to 60 s for the construction of this table.

Examining Table IV reveals that the selection of block size has almost no effect on short-term loads at fairly 
rare fractile levels. This suggests that although smaller block sizes do not guarantee independence, assuming 
otherwise does not lead to predictions of grossly inaccurate loads at the 84th percentile non-exceedance prob-
ability level for global maxima. This also suggests that one could use very small block sizes without concern for 
independence; however, no new information is gained by the signifi cantly larger sample of extremes that would 
result with this small block size. Stated differently, the fi ndings summarized in Table IV based on this LE3 data 
set somewhat surprisingly suggest that not enforcing an independence assumption among the block maxima will 

Table III. Averaged sample correlation coeffi cients from lag-one block maxima 
with different block sizes based on 20 simulations of four different loads for the 

most important wind speed bins

Block size (s) OOPBM FATBM IPBM OoPTD

16 < V < 18 16 < V < 18 22 < V < 24 16 < V < 18

5 0.39 0.33 0.34 0.53
10 0.33 0.32 0.27 0.41
15 0.29 0.24 0.17 0.35
20 0.26 0.24 0.11 0.30
30 0.22 0.20 0.09 0.25
60 0.11 0.03 0.03 0.11

Table IV. Estimates of the 84th percentile global maximum load for four 
different load types as obtained from block maxima distributions using different 

block sizes

Block size (s) OOPBM FATBM IPBM OOPTD

MN-m MN-m MN-m m

16 < V < 18 16 < V < 18 24 < V < 26 16 < V < 18

5 12.87 78.91 7.47 7.31
10 12.87 78.92 7.47 7.31
15 12.87 78.92 7.47 7.31
20 12.88 78.93 7.47 7.31
30 12.88 78.94 7.47 7.32
60 12.89 78.97 7.48 7.32
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likely have no signifi cant impact on short-term distributions and hence on extrapolation. Figure 7 illustrates this 
issue by showing short-term empirical distributions based on two different block sizes, one of a 20-s duration 
that guarantees independent block maxima and the other of a 5-s duration that almost certainly does not.

Short-term distributions on block maxima for the two block sizes are adjusted based on equation (5) so as 
to be directly represented in terms of exceedance probability in 10 min. From Figure 7, it is seen that even 
with a block length as short as 5 s the tail of the short-term distribution of OOPBM for this 16–18 m/s wind 
speed bin is almost identical to the one obtained by using 20-s block maxima. This confi rms our statement 
that the assumption of independence among block maxima, even if not justifi ed, has insignifi cant impact on 
predicted rare load fractiles. At the same time, this leads one to the conclusion that empirical distributions 
based on the use of larger samples of closely spaced block maxima offer no advantages over the use of smaller 
samples of well-separated block maxima or even global maxima. It should be pointed out that these fi ndings 
are based on studies only with the LE3 loads data sets.

Finally, we might state that instead of focusing on the question of independence among extremes, it may 
be more benefi cial to focus on establishing stable tails of the short-term empirical loads distributions. This 
point has been emphasized several times where we have indicated a need to focus attention on the importance 
of short-term distribution tails and their propagation to the aggregated long-term distribution curve and its use 
in extrapolation. In the following, we discuss procedures for controlling the uncertainty associated with these 
rare empirical short-term load fractiles.

Convergence Criteria
From the preceding discussions, we have seen that adjusting the block size when extracting extremes data from 
load time series may have a limited effect on the tails of short-term distributions. Accordingly, now our focus 
shifts to whether or not increases in the number of simulations—with global maxima extracted from each simu-
lation—can help to better defi ne distribution tails and, hence, improve predictions of aggregated long-term 
distributions and of any extrapolated rare load. It is of interest to be able to estimate how many global maxima 
(or simulations) would be required to adequately defi ne rare load fractiles. It is expected that by increasing the 
number of simulations, additional useful information about rare large loads can be gained. This should better 

(a) (b)

Figure 7. Short-term distributions for OOPBM for (a) a 20-s block size where independence is verifi ed (see Table II); 
and (b) a 5-s block size where block maxima are dependent
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defi ne short-term load distributions for two reasons. First, additional simulations will realize both more maxima 
and generally some large loads that can help to fi ll out and better defi ne the tail of the distribution; this will result 
in reduced uncertainty in the aggregated long-term distribution as well and, ultimately, in an improved extrapo-
lated load prediction. Second, with additional simulations, estimation of lower and lower probabilities of exceed-
ance is possible leading to a reduction in the extent of extrapolation needed beyond the simulated loads data.

The real issue with running simulations, however, is one of practicality. Carrying out a large number of 
simulations can be time-consuming; hence, it would be benefi cial to know what minimum number of simula-
tions is needed to limit the uncertainty in load predictions to some specifi ed level. A proposal is to enforce a 
convergence criterion on the tail fractiles of the empirical short-term distributions, not on the long-term dis-
tributions nor on the extrapolated long-term (50 years) load itself; for instance, one could require that the 
uncertainty in the p-quantile load of the short-term load distribution be no larger than some specifi ed value. 
This could be prescribed by enforcing a maximum limit on confi dence intervals on the p-quantile load. We 
propose such a convergence criterion that may be expressed mathematically in the following manner:
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where the denominator in equation (9) represents the empirical estimate of the p-quantile load (similar to lp 
defi ned in equation (6) earlier), whereas the numerator represents the (2a-1)% confi dence interval on the p-
quantile load. The right-hand side of the inequality contains the variable, q, which represents the maximum 
acceptable percent error permitted on the normalized confi dence interval (where normalization is with respect 
to the p-quantile load itself). The convergence criterion, as stated, implies that if the normalized confi dence 
interval based on a certain number of simulations exceeds the specifi ed maximum acceptable error, additional 
simulations will need to be run to reduce this normalized confi dence interval. The rationale behind specifying 
the convergence criterion in this manner is that if the p-quantile is chosen to be reasonably far in the tail of 
the short-term distribution, uncertainty in its estimate can be controlled or limited. As the tail quite directly 
infl uences the long-term aggregated distribution and the extrapolated load, the convergence criterion mentioned 
earlier—although it does so only indirectly—aids in the overall purpose of statistical loads extrapolation. We 
need to next discuss how the confi dence interval in the numerator of equation (9) can be estimated from data 
and how the maximum acceptable percent error, q, may be selected. We need to be cognizant of the excessive 
level of effort that may be needed if q is specifi ed very small or if p is specifi ed as a quantile level that is too 
far in the tail of the short-term load distribution.

Confidence Intervals Based on Bootstrapping
Estimates of the confi dence interval of the p-quantile load are related to the number of simulations or data 
points used in estimating that load. The bootstrap technique proposed by Efron and Tibshirani10,11 makes it 
possible to estimate such confi dence intervals by a process that involves randomly resampling data, with 
replacement, many times. Efron and Tibshirani11 point out that bootstrapping is a computer-intensive procedure 
as the data set may need to be resampled thousands of times in order to accurately estimate confi dence inter-
vals on statistics such as the quantiles of a distribution. Henderson12 provides an excellent review of the boot-
strap method and offers many examples of its implementation and subtleties involved in its use.

Using the bootstrap procedure to form confi dence intervals begins with taking the initial set of data on, say, 
n global maxima (m1, m2, m3, m4, m5  .  .  .  mn) and randomly resampling these data with replacement to form 
each time a new set (m1*, m2*, m3*, m4*, m5*  .  .  .  mn*) or a bootstrap resampling of the same size as the 
original sample. Note that bootstrap resamplings will be composed of repeated values from the original sample 
because, for each resampling, data are sampled randomly with replacement. The process is repeated so as to 
form a large number, Nb, of bootstrap resamplings. From each of these sets of n data, individual estimates of 
the p-quantile can be obtained. From these Nb estimates, confi dence intervals can be found in the usual manner 
by rank-ordering the Nb p-quantile estimates. These can then be used for the numerator of equation (9). The 
estimate of the p-quantile that is obtained from the original data represents the denominator of equation (9).
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It is worthwhile to discuss the need to perform a suffi ciently large number of bootstrap resamplings to obtain 
reliable estimates of confi dence intervals. The literature suggests that sometimes as few as 25 bootstrap resa-
mplings may be suffi cient to estimate some statistics; however, it has also been pointed out that many more 
resamplings are required to estimate confi dence intervals.10 Lunneborg13 has suggested that bootstrap resam-
plings be increased incrementally until some stability results in estimates of the standard error. However, as 
pointed out earlier, bootstrapping is a computer-intensive method and the question of how many bootstrap 
resamplings are required is perhaps not so important as it is just as easy to carry out 5000 resamplings as it is 
carry out 25; the benefi t of a larger number is that it will lead to more reliable estimates of the desired statis-
tic (see Chernik14 for further discussion on this issue). In the present study, 5000 bootstrap resamplings were 
used to form confi dence interval estimates on load quantiles and these were found to be adequately stable. 
Figure 8 illustrates differences between confi dence interval estimates on the 0.84-quantile OOPBM load when 
a small number of bootstrap resamplings is used (25 in the top panel of the fi gure) compared with that when 
a large number is used (5000 in the bottom panel of the fi gure). Variability in estimates of the normalized 90% 
confi dence interval width is obvious with the smaller number as what is evident by running the same bootstrap 
procedure 10 times. With the smaller number of bootstrap resamplings, 90% confi dence intervals on a 0.84-
quantile load from different runs can vary greatly from the stable estimates obtained with the larger number; 
deviations are smaller with the larger number of bootstrap resamplings.

Confidence Intervals Based on the Binomial Distribution
As an alternative to the bootstrap procedure discussed earlier, the binomial distribution may also be used to 
obtain confi dence interval estimates on the p-quantile load.15 This can limit the computational effort necessary 
when evaluating the numerator in equation (9). The theoretical development is presented here.

Figure 8. Normalized 90% confi dence interval estimates on the 0.84-quantile global maximum OOPBM load in the 18–
20 m/s wind speed bin based on 30 simulations followed by 25 bootstrap resamplings (top fi gure) and 5000 resamplings 

(bottom fi gure)
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We start by writing the formula for the binomial probability mass function, B(i; m, p), which expresses the 
probability of i occurrences of an event of interest in m Bernoulli trials when the probability of occurrence of 
the event in any single trial is p.

 B i m p
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i m i
p p i mi m i; ,
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! !
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In the present context, let the event of interest refer to the non-exceedance of the estimated p-quantile load 
and let m refer to the number of aeroelastic simulations run as well as to the number of global maxima extracted. 
From the defi nition of the probability mass function in equation (10), a cumulative distribution function, C(  j; 
m, p), may be written as follows:
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To form the confi dence interval on the p-quantile load needed for the numerator of equation (9), two load 
levels, xk and xl, need to be found such that the following is true (where X refers to the p-quantile load):

 P x X xk l< <( ) = −2 1α  (12)

To simplify notation, the quantities, L̂(1−a),p and L̂a,p, in equation (9) have been replaced by xk and xl, respectively, 
in equation (12). The load levels, xk and xl, need to be obtained by searching the rank-ordered extremes, x1*, 
x2*,  .  .  .  xm*, from the m simulations and then interpolating. It is generally possible to fi nd two integer values, 
k* and l*, where k* is the largest integer such that

 C k m p*; ,( ) ≤ −( )1 α  (13)

and where l* is the largest integer such that

 C l m p*; ,( ) ≤ α  (14)

and 1 ≤ k* < l* ≤ m − 1.
The integers k* and l* are such that xk* and xl* bound the desired load levels, xk and xl, from below. 

This in turn means that xk* ≤ xk ≤ x(k+1)* and xl* ≤ xl ≤ x(l+1)*. Once the integers k* and l* are found using 
equations (13) and (14); the load levels xk and xl may be found by interpolation as follows:
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where, to simplify notation, we have set C(k*; m, p) = Ck*, C[(k + 1)*; m, p] = C(k+1)*, C(l*; m, p) = Cl*, and 
C[(l + 1)*; m, p] = C(l+1)*. The desired (2a-1)% confi dence interval required for equation (9) is simply equal 
to xl − xk.

Normal Approximation to the Binomial Distribution
Note that the binomial cumulative distribution function is needed to fi nd the integer values of k* and l* as 
well as to obtain the values of xk and xl using equations (15) and (16). It is possible to replace the binomial 
distributed integer random variable representing the number of occurrences in m trials (where the probability 
of event occurrence in a single trial is p) by a normally distributed real random variable with mean equal to 
mp and variance equal to mp(1 − p). If this is done, the confi dence interval developed following the steps 
indicated by equations (11)–(16) remains valid; the only difference is a simplifi cation of equation (11) that 
may be approximated as follows:
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In equation (17), Φ( ) refers to the cumulative distribution function of a standard normal random variable. The 
reduced effort in steps involving determination of the values of k* and l* in equations (13) and (14) represents 
the most signifi cant advantage as it is much easier to fi nd k* and l* by using the inverse cumulative distribu-
tion of a standard normal random variable than it is to evaluate the binomial cumulative distribution function 
using equations (10) and (11). Note that the normal approximation to the binomial involves a continuity cor-
rection of 0.5 in the defi nition of zj in equation (17) as we are replacing an integer random variable with a real 
one. Although the normal approximation to the binomial is most accurate when the values of mp and m(1 − p) 
are greater than 5, in other cases as well the approximation is reasonably accurate as we shall see.

Binomial Confidence Bounds Simplified for Wind Turbine Applications
The confi dence intervals based on the binomial distribution as developed in equations (10)–(16) are less com-
putationally intensive than those computed using the bootstrap procedure. It is possible, though, to simplify 
the binomial-based confi dence intervals to an even greater extent for applications to statistical extrapolation 
of wind turbine extreme loads. Essentially, this is done by tabulating values of k* and l* that will result for 
most common situations where the number of simulations is in the order of 15 to 35 for each wind speed bin. 
This number of simulations will be shown to be reasonable if, in equation (9), the 90% confi dence interval on 
the 84th percentile load is computed, and the maximum error on the normalized confi dence interval of equation 
(9) is to be less than 15% (i.e. q = 15). Note that the simplifi ed approach to the binomial-based confi dence 
interval can only be reasonably tabulated for specifi c values of p and a. For instance, for p equal to 0.84 and 
a equal to 0.95, Table V provides values of k* and l* as well as two other values, A and B, needed for inter-
polating as done in equations (15) and (16).

Table V. Parameters needed to establish binomial-based confi dence intervals 
(for a = 0.95 and p = 0.84)

Number of simulations k* l* A B

15 9 14 0.50 0.32
16 10 15 0.27 0.19
17 11 16 0.10 0.03
18 11 16 0.87 0.96
19 12 17 0.58 0.90
20 13 18 0.35 0.83
21 14 19 0.16 0.76
22 14 20 1.00 0.69
23 15 21 0.69 0.60
24 16 22 0.45 0.50
25 17 23 0.25 0.39
26 18 24 0.08 0.26
27 18 25 0.85 0.12
28 19 25 0.58 0.98
29 20 26 0.36 0.91
30 21 27 0.18 0.83
31 22 28 0.02 0.75
32 22 29 0.75 0.66
33 23 30 0.51 0.56
34 24 31 0.31 0.44
35 25 32 0.13 0.32
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Table V works in conjunction with a design equation that is tailored to be used with it. This design equation 
and Table V give the 90% confi dence interval for the 84th percentile 10-min maximum [i.e. a = 0.95 and p = 
0.84 in equation (9)]. The design equation can be written as follows:

 x x x x B x x A x xl k l k l l k k−( ) = −( ) + −( ) − −( )+( ) +( )* * * * * *1 1  (18)

where l*, k*, A and B are given in Table V as a function of the number of simulations run, and xl*, x(l+1)*, xk* 
and x(k+1)* are obtained from the rank-ordered simulated extremes.

As an illustration of how equation (18) and Table V can be used, consider a situation where 20 simulations 
have been carried out. Then, l* = 18, k* = 13, A = 0.35 and B = 0.83 according to Table V, and if the rank-
ordered extremes, x13*, x14*, x18* and x19* are found, equation (18) can be used to compute the confi dence inter-
val needed for equation (9). If the convergence criterion is not met according to equation (9), additional 
simulations may be run and new values of l*, k*, A and B obtained again from Table V. This may be repeated 
until the convergence criterion is met.

Application of the Convergence Criteria to the LE3 Loads Data Set
Convergence criteria for four load measures, OOPBM, FATBM, OOPTD and IPBM are studied using the LE3 
loads database. Based on equation (9), we are interested in computing the percent error in terms of the normal-
ized 90% confi dence interval of the 84th percentile 10-min global maximum for each load type for different 
numbers of simulations. If the maximum allowable percent error, q, is specifi ed, the appropriate number of 
simulations can be ran. Table VI shows computed percent errors when 30 simulations are ran for each wind 
speed bin and for all of the four loads. The results presented in these tables suggest that the convergence 
criterion is adequately met if the maximum error permitted is 15% (i.e. if q is equal to 15). For IPBM loads, 
even a 10% maximum error criterion would be met when 30 simulations are ran. For the OOPBM and OOPTD, 
slowest convergence is seen in the 16–18 m/s wind speed bin but even there, 30 simulations lead to normalized 
90% confi dence intervals on the 84th percentile load that are smaller than 15%.

Short-term load distributions for the four load types are summarized in Figure 9 for the single wind speed 
bin that in each case showed slowest convergence based upon the normalized 90% confi dence interval on the 
84th percentile load. The 90% confi dence intervals are shown for each empirical distribution at the 1–0.84 
exceedance probability level. The 84th percentile load is shown along with the confi dence interval based on 
the bootstrap method as well as the binomial method.

The preceding discussion suggests that, for the LE3 data set, adequately stable tails for the short-term dis-
tributions in all wind speed bins can be obtained if 30 simulations are ran. Enforcing the convergence criterion 
of a maximum percent error of 15% on the normalized 90% confi dence interval on the 84th percentile load in 
the short-term distributions leads us to state that these distributions are reasonably well-estimated. The next 
and more important issue to study with regard to extrapolation is whether or not the controlled uncertainty in 
short-term distributions propagates to stable aggregated long-term distributions as well. Tail stability of aggre-
gated long-term distributions for each load type can be evaluated using bootstrap procedures in a similar manner 
to that employed for the short-term distributions. However, as the aggregated distribution involves weighting 
based on the Rayleigh wind speed distribution, it is not possible to bootstrap the data in this long-term distri-
bution directly. Instead, the short-term distributions can be each bootstrapped separately and then for each 
wind speed bin’s bootstrap resampling, the aggregation can be carried out leading to multiple long-term dis-
tribution curves. From these multiple long-term probability distributions, it is possible to evaluate confi dence 
intervals on any desired long-term load quantile. All the wind speed bins are aggregated in the long-term 
distribution but are weighted to different degrees according to the Rayleigh distribution. The worst wind speed 
for convergence at the short-term level is diminished (in relative terms) in importance at the long-term level. 
As a result, long-term distributions often appear fairly stable and have low uncertainty, once convergence 
criteria for short-term load distributions have been enforced.

In closing our discussion on convergence criteria, we note that when a maximum error of 15% was imposed 
for the short-term distributions (in conjunction with 90% confi dence intervals of the 84th percentile load), 90% 



Statistical Extrapolation for Wind Turbine Loads 631

Copyright © 2008 John Wiley & Sons, Ltd. Wind Energ 2008; 11:613–635
 DOI: 10.1002/we

Table VI. Estimates of the 84th percentile load, xk, xl, and the binomial-based normalized 90% confi dence interval for 
OOPBM, FATBM, OOPTD, and IPBM based on 30 simulations

OOPBM x84 (MN-m) xk (MN-m) xl (MN-m) (xl − xk)/x84 (%)

2 < V < 4 3.50 3.36 3.55 5.5
4 < V < 6 5.82 5.54 5.90 6.2
6 < V < 8 9.09 8.52 9.47 10.5
8 < V < 10 12.45 12.28 12.63 2.8
10 < V < 12 13.52 13.38 13.60 1.6
12 < V < 14 13.84 13.59 13.90 2.3
14 < V < 16 13.87 13.57 14.02 3.2
16 < V < 18 13.33 12.17 13.84 12.5
18 < V < 20 11.58 11.08 11.66 5.0
20 < V < 22 10.83 10.33 10.95 5.8
22 < V < 24 10.05 9.78 10.57 7.9
24 < V < 26 9.80 9.54 10.12 5.9

FATBM x84 (MN-m) xk (MN-m) xl (MN-m) (xl − xk)/x84 (%)

2 < V < 4 24.75 23.56 25.52 7.9
4 < V < 6 35.82 35.52 36.00 1.3
6 < V < 8 51.51 48.94 53.59 9.0
8 < V < 10 73.30 72.18 74.97 3.8
10 < V < 12 80.51 79.27 80.72 1.8
12 < V < 14 85.04 83.20 86.78 4.2
14 < V < 16 84.06 82.82 85.49 3.2
16 < V < 18 81.16 78.20 83.07 6.0
18 < V < 20 71.89 67.24 72.69 7.6
20 < V < 22 62.05 60.55 64.95 7.1
22 < V < 24 63.45 59.23 64.80 8.8
24 < V < 26 61.84 59.09 62.59 5.7

OOPTD x84 (m) xk (m) xl (m) (xl − xk)/x84 (%)

2 < V < 4 2.08 1.93 2.14 10.2
4 < V < 6 3.35 3.24 3.47 6.8
6 < V < 8 5.05 4.80 5.25 9.0
8 < V < 10 6.93 6.87 7.04 2.5
10 < V < 12 7.73 7.48 7.78 3.9
12 < V < 14 7.74 7.65 7.77 1.6
14 < V < 16 7.69 7.45 7.73 3.7
16 < V < 18 7.52 6.56 7.69 15.0
18 < V < 20 6.04 5.71 6.36 10.7
20 < V < 22 5.52 5.17 5.65 8.8
22 < V < 24 4.94 4.52 4.95 8.6
24 < V < 26 4.45 4.18 4.78 13.5

IPBM x84 (MN-m) xk (MN-m) xl (MN-m) (xl − xk)/x84 (%)

2 < V < 4 3.79 3.75 3.81 1.7
4 < V < 6 4.25 4.21 4.28 1.8
6 < V < 8 4.96 4.90 5.05 2.9
8 < V < 10 5.67 5.60 5.82 3.9
10 < V < 12 6.03 5.96 6.06 1.6
12 < V < 14 6.35 6.28 6.45 2.6
14 < V < 16 6.45 6.33 6.54 3.2
16 < V < 18 6.70 6.61 6.75 2.0
18 < V < 20 7.03 6.72 7.26 7.6
20 < V < 22 7.37 7.16 7.42 3.6
22 < V < 24 7.62 7.43 7.90 6.2
24 < V < 26 7.69 7.44 7.85 5.2
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confi dence bounds long-term distributions are also small. It is important to note, though, that these results were 
based on studies of four loads and came from one wind turbine model alone. If simulated loads data from other 
turbines are considered, results might be different; therefore, it is suggested that the value of q in equation (9) 
be adjusted as appropriate so as to not cause excessive amount of simulations. The convergence criterion triad 
(a = 0.95, p = 0.84, q = 15) for short-term distributions has been demonstrated to yield stable tails of the 
short-term distributions as well as stable long-term distributions. It was found that if the short-term distribu-
tions are verifi ed through convergence checks, uncertainty in aggregated long-term distributions is acceptably 
low as well.

Real Uncertainty in Short-Term Loads
We have shown that confi dence intervals on any load quantile at the short-term level may be estimated using 
bootstrap- and binomial-based methods. These estimates rely on a limited single set of simulated data. It is 
possible, though, to examine confi dence intervals and evaluate convergence criteria by using the entire LE3 

Figure 9. Short-term distributions for OOPBM, FATBM, OOPTD and IPBM based on 30 simulations. Bins selected 
have largest 90% relative confi dence bounds (RCBs) on the 84th percentile load. The 84th percentile load is shown as 

are binomial- and bootstrap-based confi dence intervals (CIs)
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loads data set. If all the 1200 global maxima available for each wind speed bin are utilized, real uncertainty 
can be estimated directly without resorting to methods such as bootstrapping. For example, this may be 
done by subdividing the set of 1200 global maxima per bin into 40 individual sets of 30 maxima. Then, real 
confi dence intervals of the p-quantile load may be found by extracting 40 estimates of that load. The conver-
gence criterion based on equation (9) can then be checked using this confi dence interval. As all the data here 
are real wind turbine maxima, not statistical estimates, the 90% confi dence interval is normalized by the mean 
of these values. Figure 10 shows a comparison of 90% confi dence intervals for the 84th percentile levels of 
four loads (OOPBM, FATBM, OOPTD and IPBM) based on 30 simulations, except in the ‘real’ case that is 
based on 1200 simulations. The fi gure shows no consistent trend or difference between confi dence intervals 
based on real data versus those based on bootstrapping and the binomial approach. Note that the fi gure also 
shows that the normal approximation to the binomial is generally quite good for estimation of confi dence 
intervals.

Conclusions
Using the LE3 loads data, several questions related to the theory and practical implementation of statistical 
loads extrapolation have been addressed. First, we have emphasized the need to understand which wind speeds 
tend to cause largest loads of different types. This information is useful to have when determining where greater 
simulation effort is needed.

Figure 10. Normalized 90% confi dence intervals on the 84th percentile load based on 1200 simulations (real data), as 
well as based on 30 simulations followed by bootstrapping, a binomial-based method and a normal approximation to 

the binomial. Results are shows for four load types (OOPBM, FATBM, OOPTD and IPBM) and for all wind speed bins
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We have presented details related to several steps involved in predicting a long-term load of interest (such 
as the 50-year return period load) by defi ning short-term distributions fi rst and then aggregating these to long-
term distributions.

We have compared the use of global and block maxima in the context of statistical loads extrapolation. 
Issues related to independence of block maxima have been addressed and statistical tests of independence have 
been formulated. Ignoring unimportant wind speed bins, it was found that block sizes of around 40–60 s for 
four loads (OOPBM, FATBM, OOPTD and IPBM) led to independent block maxima when checked at the 1% 
signifi cant level based on a well-accepted statistical test. Finally, with the LE3 data, it was demonstrated that 
there is no advantage gained from using block maxima over global maxima when short-term loads are esti-
mated. Moreover, even if block sizes are very small so as to exhibit dependence, ignoring this again leads to 
small error in estimation of short-term loads.

In order to assure stable or robust short-term distributions especially in the tails of these distributions, a 
convergence criterion was developed that relies on computing confi dence intervals on rare load quantiles. 
Based on studies with the LE3 data, the convergence criterion that was proposed is that the normalized 90% 
confi dence interval on the 84th percentile load (normalization is with respect to the 84th percentile load estimate 
from the simulations) may not exceed 15%. The 90% confi dence interval that forms part of the convergence 
criterion may be estimated based on bootstrap methods as well as the binomial distribution. Both procedures 
have been developed here. Additionally, for the binomial method, an approximation using the normal distribu-
tion was presented. Finally, a design equation and additional tabulated parameters were presented that enable 
quick computation of the normalized 90% confi dence interval on the 84th percentile load as long as the number 
of simulations run is between 15 and 35. The convergence criteria were applied for four loads (OOPBM, 
FATBM, OOPTD and IPBM), and with 30 simulations, the normalized 90% confi dence interval on the 84th 
percentile load never exceeded 15%. Bootstrap- and binomial-based confi dence intervals were reasonably 
similar. The convergence criteria applied to the short-term loads distributions were verifi ed to lead to smaller 
uncertainty in aggregated long-term load distributions. Small uncertainty in long-term distributions is expected 
to lead to good, robust predictions of extrapolated rare loads although that was not a focus of this study.

In closing, it is important to note that all of these conclusions were derived based on fi ndings from the LE3 
data set and the simulated loads data are for the LE3 5MW turbine model alone. It is possible that the study 
of loads from other turbines will lead to different conclusions. Nevertheless, the focus of this study was 
to develop several new ideas that—it is hoped—will aid in statistical loads extrapolation for practicing 
engineers.
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