Watershed-level identification of impervious cover to remove from transportation facilities

Katie Larsen Ph.D. student, Transportation Engineering The University of Texas at Austin

Presentation Overview

- Motivation
- Shoal Creek
 Watershed
- Priority Impervious Cover
- Eligible Facilities
- Next Steps

Motivation

- Pipes and channelized creeks:
 - Decrease infiltration and evaporation
 - Increase frequency and flow rate

- As an alternative, remove existing impervious cover from transportation facilities:
 - Streets
 - Parking lots
 - Driveways

Examples of Removing Impervious Cover

Sources (L to R, clockwise): Indyculturaltrail.org City of Portland City of Seattle

- City of Austin datasets from ftp site
- Planimetric Polygon \rightarrow Raster

Type of	% of Total	
Impervious	Watershed	
Cover	Area	
Streets	12.7%	
Parking areas	12.3%	
Buildings	17.8%	

Prioritize Impervious Cover to Remove

• Effective impervious areas (EIA)

Impervious areas <u>within</u> stream buffer

Methods of Estimating EIA

Manual

- Field investigations
- Statistical
 - Rainfall-runoff analysis
 - Automated (GIS)

• Missing:

- Curb & gutter locations
- Stormwater system for entire watershed
- Assume all transportation facilities EIA

Stream Buffers Around Shoal Creek

Impervious Cover in Buffer	% of Total Watershed Area
Transportation	2.9%
Building	1.6%

Eligible Transportation Facilities

Roadways

Traffic Count < Traffic Capacity,

AND

Actual Street Width > Max. Street Width for Road Class

Parking Lots

Parking Space Count > Parking Space Requirements

Eligible Roadways

- Create composite raster value that gives:
 - road class
 - street width between centerline and street edge

	Road class Euclidian distance	Raster Value
Street feature	New field of road class values (e.g., 6 * 1000 = 6000)	
Raster 1	Euclidian allocate road class value	
Raster 2	Raster Euclidian distance (feet) from centerline	22
	Map algebra raster 1 + raster 2	+
New raster	Composite raster value	
	Conditional raster analysis If 6022 > 6012 (maximum half-street width for class 6), 1 0 Otherwise	1 (eligible)

Road Class		Description	Max Half Street Width
4000	Major arterial	5 lanes	28 feet
5000	Minor arterial	3 lanes	18 feet
6000	Local street	2 lanes	12 feet
8000	Collector	2 lanes	15 feet

Euclidian distance (raster)

Problem: Street centerline ≠ centerline of raster streets

Solutions:

ArcScan vectorization of transportation raster

- Repair geometry
- Manual repair of centerlines

Eligible Parking Lots

- Site plan feature class: case #
- Development review website:
 - Gross floor area
 - Minimum/maximum parking requirements
 - Actual parking
- Assign 0/1 value to raster parking lot cells

Next Steps

Map of eligible transportation facilities

- Map and area of priority impervious cover to remove
- HEC-HMS of before and after removal

In Closing...

- City of Austin data not "analysis ready"
- Provides sketch-planning level scan of potential to remove impervious cover from transportation facilities