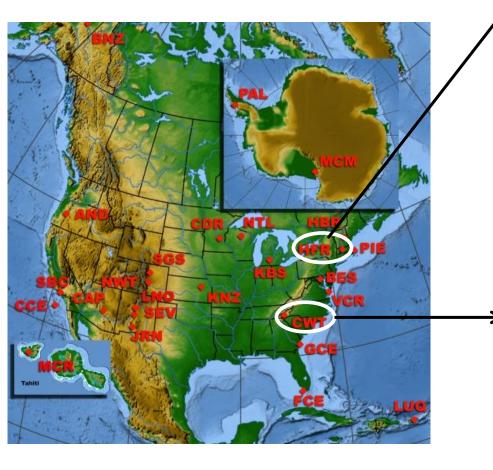

The Response of Different Soil Types to Precipitation Events over Contrasting Soil Moisture Conditions

CE 394K TERM PROJECT

By: Nathan Meyer

Introduction

Task: Analyzing how runoff and vadose zone retention varies over different soil types.


Hypothesis: Drier soil are able to hold more precipitation than saturated, tightly packed soils, decreasing the runoff and increasing infiltration

Methods:

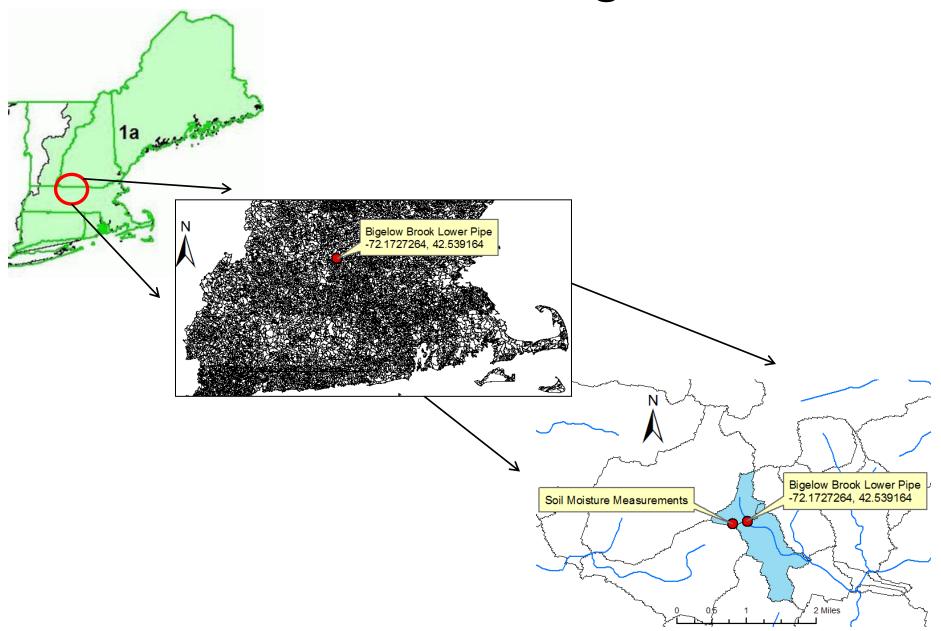
- A robust dataset of **Soil Water Content** measurements over time is key
- Compare Inputs and Outputs of a small watershed.
- Create a **Budget** to quantitatively assess the retention ability of the soils.

Data Gathering and Background

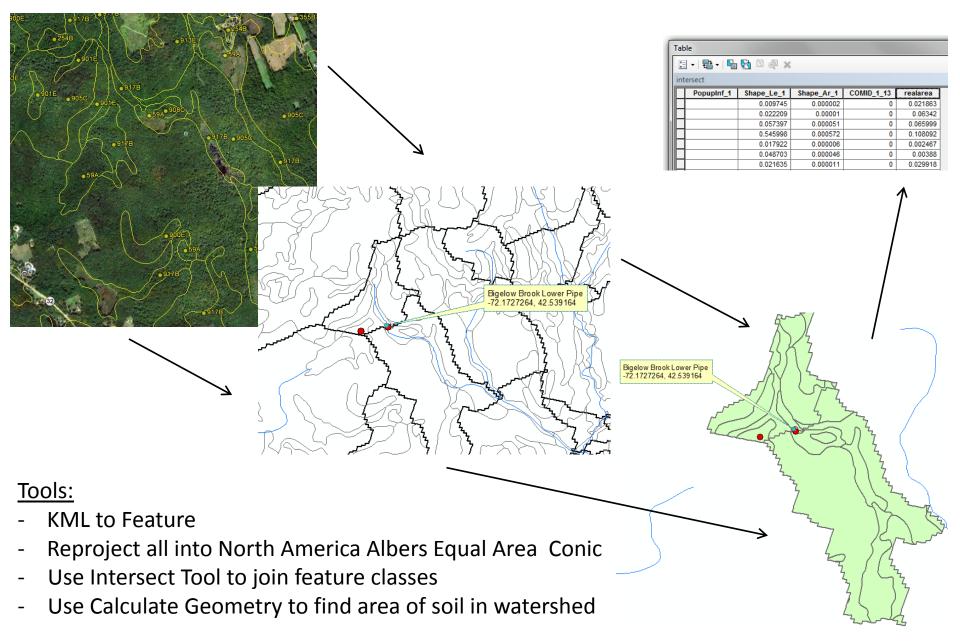
Long Term Ecological Research Sites (LTER)

Harvard Forest LTER

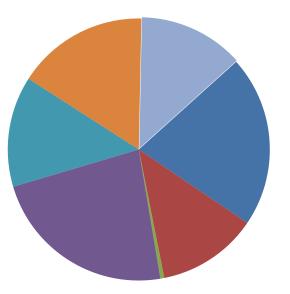
Coweeta LTER



Data and Processing


1.) NHDPlus

- Watershed Area
- Streamlines
- Gauging Stations
- Elevation Data
- 2.) UC Davis Soil Resource Laboratory
 - US Soil Survey data (SSURGO)
 - Google Earth Survey Browser
- 3.) LTER Localized Data Sets
 - Hydrographs
 - Precipitation
 - Soil Moisture
 - Additional GIS Data Sets

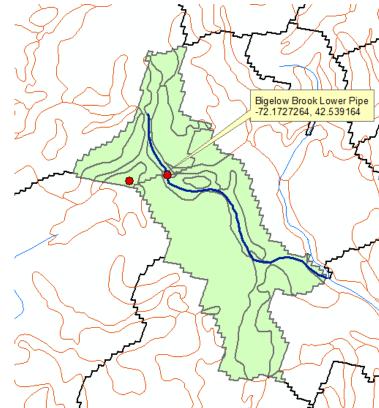

Local Watershed Designation

Soil Series KML to Feature

Harvard LTER Soils

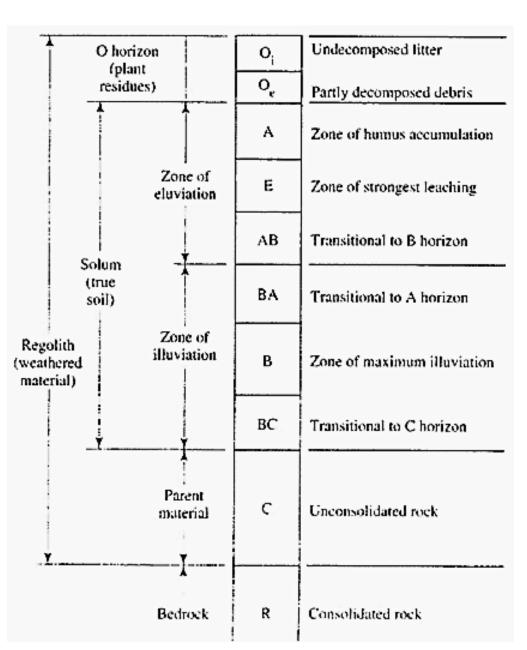
- Becket-Skerry association
- Berkshire-Marlow association
- Bucksport and Wonsqueak mucks
- Lyman-Tunbridge-Berkshire association
- Peru-Marlow association
- Pillsbury-Peacham association
- Tunbridge-Lyman-Berkshire association

Soil Series	% Area
Lyman-Tunbridge-Berkshire association	23.05
Becket-Skerry association	21.15
Pillsbury-Peacham association	16.24
Peru-Marlow association	13.68
Tunbridge-Lyman-Berkshire association	13.03
Berkshire-Marlow association	12.41
Bucksport and Wonsqueak mucks	0.48


Soil Orders

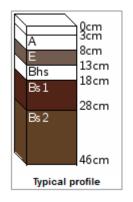
- Spodosols
- Inceptisols

Data sets to use:


Soil Moisture: HEM Tower HF153-09 Hydrograph: Prospect Hill Hydrological Stations HF070 Dates: 4/26- 7/11/2006 Total Area: 0.51 km²

Note: Several soil series within this watershed are described as very rocky

<u>Soils</u>

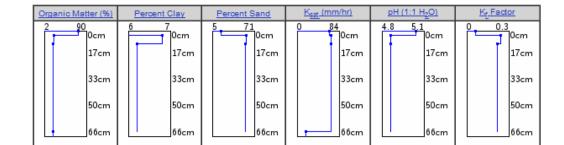

Lyman-Turnbridge-Berkshire

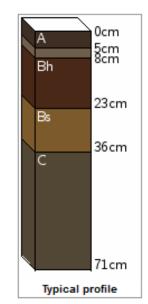
Soil Taxonomy

Order:	Spodosols				
Suborder:	Orthods [Map of Suborders]				
Greatgroup:	Haplorthods				
Subgroup:	Lithic Haplorthods				
Family:	Loamy, mixed, frigid Lithic Haplorthods				
Soil Series:	Lyman (Link to OSD) (Link to SM Tool)				

Soil Taxonomy

Order:	Spodosols			
Suborder:	Orthods [Map of Suborders]			
Greatgroup:	Haplorthods			
Subgroup:	Typic Haplorthods			
Family:	Coarse-loamy, mixed, frigid Typic Haplorthods			
Soil Series:	Tunbridge (Link to OSD) (Link to SM Tool)			




Spodosols

Spodosols are acid soils characterized by a subsurface accumulation of humus that is complexed with Al and Fe. These photogenic soils typically form in coarse-textured parent material and have a light-colored E horizon overlying a reddish-brown spodic horizon. The process that forms these horizons is known as *podzolization*.

Spodosols often occur under coniferous forest in cool, moist climates. Globally, they occupy \sim 4% of the ice-free land area. In the US, they occupy \sim 3.5% of the land area.

Many Spodosols support forest. Because they are naturally infertile, Spodosols require additions of lime in order to be productive agriculturally.

Bg1

Bg2

Cd

0cm 3cm

15 cm

33cm

58cm

Pillsbury-Peachum

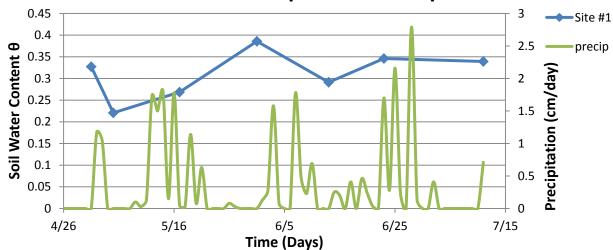
Soil Taxonomy

Order:	Inceptisols				
Suborder:	Aquepts [Map of Suborders]				
Greatgroup:	Haplaquepts				
Subgroup:	Aeric Haplaquepts				
Family:	Coarse-loamy, mixed, acid, frigid Aeric Haplaquepts				
Soil Series:	Pillsbury (Link to OSD) (Link to SM Tool)				

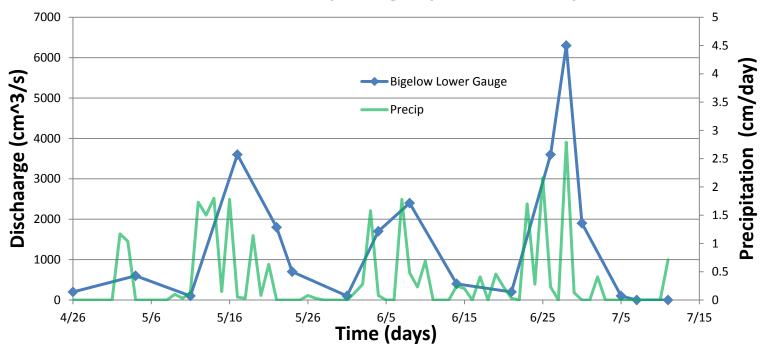
Inceptisols

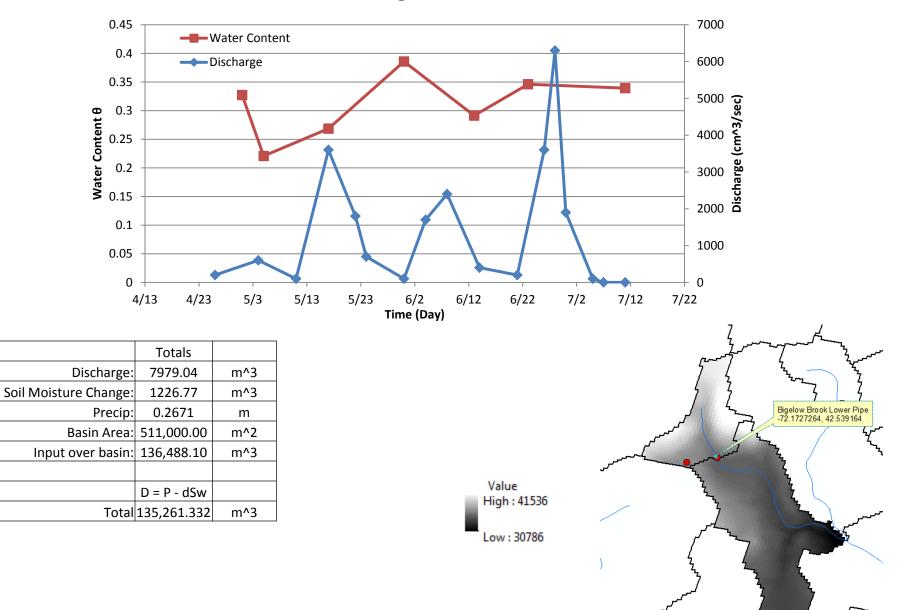
Inceptisols are soils that exhibit minimal horizon development. They are more developed than Entisols, but still lack the features that are characteristic of other soil orders.

Although not found under aridic climate regimes, Inceptisols nevertheless are widely distributed and occur across a wide range of ecological settings. They are often found on fairly steep slopes, young geomorphic surfaces, and on resistant parent materials. Land use varies considerably with Inceptisols. A sizable percentage of Inceptisols are found in mountainous areas and are used for forestry, recreation, and watershed.

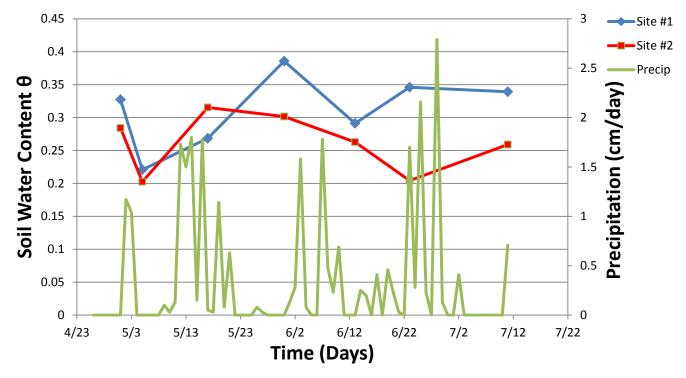

Inceptisols occupy an estimated 15% of the global ice-free land area – only the Entisols are more extensive. In the US, they occupy \sim 9.7% of the land area. Inceptisols support \sim 20% of the world's population, the largest percentage of any of the soil orders.

9	Organic Matter (%)	Percent Clay	Percent Sand	K _{sat} (mm/hr)	<u>рН (1:1 Н₂О)</u>	Kt Factor
Γ	2 5.5	60cm	48 64	3 33 0cm	5 5.3 Ocm	0.4 0.5
	41cm	41cm	41cm	41cm	41cm	41cm
	83cm	83cm	83cm	83cm	83cm	83cm
	124cm	124cm	124cm	124cm	124cm	124cm
	165cm	165cm	165cm	165cm	165cm	165cm


Typical profile


168cm

Soil Moisture Response to Precipitation



Harvard Forest: Hydrograph vs Precipitation

Harvard LTER: Discharge and Soil Water Content

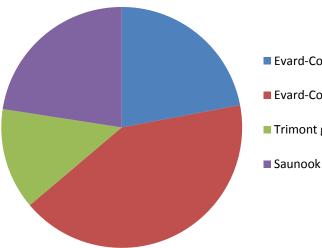
Soil Moisture Response to Precipitation

Introduction of error:

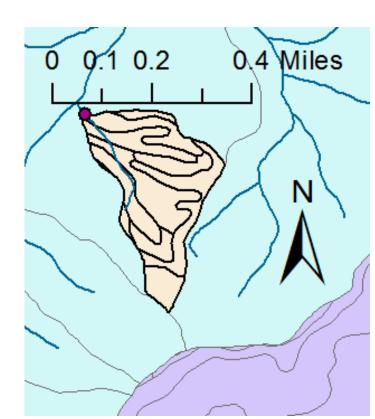
- Evapotranspiration
- Water Storage Below 20cm
- Heterogeneous Soil Conditions
- Heterogeneous Precipitation
- Lack of Measurements
- Accuracy of Measurements
- Depression Filling

Coweeta LTER

Data sets to use:

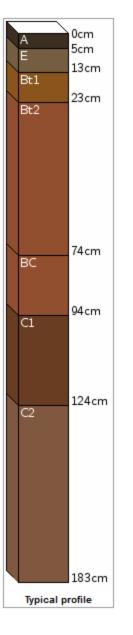

Soil Moisture: Terrestrial gradient microclimate measurements, 1013, Jennifer Knoep Hydrograph: Watershed 18 daily stream discharge, 3033, Stephanie Laseter Meteorology: Climate Station 1 Climate Data, 1011, Stephanie Laseter Dates: 4/1 - 10/3/06 Area: 123,587 m²

Soil Orders


• Ultisols

Soil Series	% Area
Evard-Cowee complex #1	19.64
Evard-Cowee complex #2	37.24
Trimont gravelly loam	12.14
Saunook gravelly loam	20.10

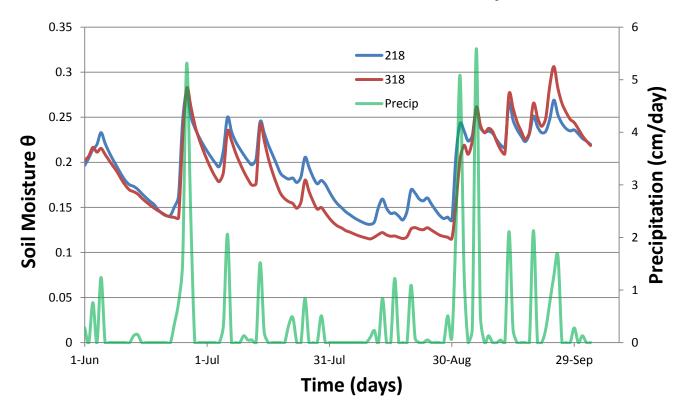
Coweeta LTER Soils



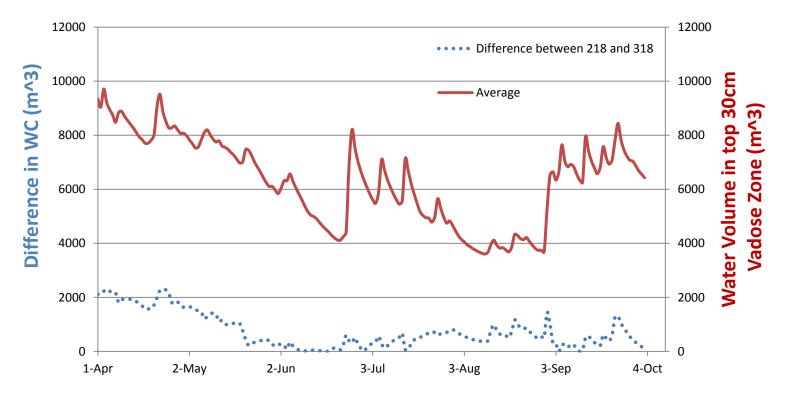
- Evard-Cowee complex #1
- Evard-Cowee complex #2
- Trimont gravelly loam
- Saunook gravelly loam

Coweeta LTER

Evard - Cowee Complex



Soil Taxonomy Order: Ultisols Suborder: Udults [Map of Suborders] Greatgroup: Hapludults Subgroup: Typic Hapludults Family: Fine-loamy, parasesquic, mesic Typic Hapludults Soil Series: Evard (Link to OSD) (Link to SM Tool)


Ultisols

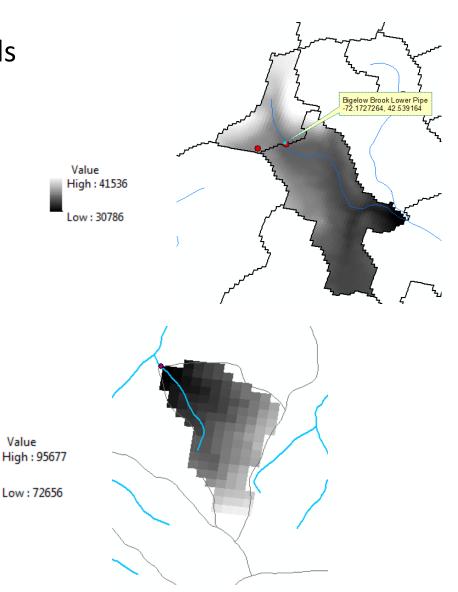
Ultisols are strongly leached, acid forest soils with relatively low native fertility. They are found primarily in humid temperate and tropical areas of the world, typically on older, stable landscapes. Intense weathering of primary minerals has occurred, and much Ca, Mg, and K has been leached from these soils. Ultisols have a subsurface horizon in which clays have accumulated, often with strong yellowish or reddish colors resulting from the presence of Fe oxides. The 'red clay' soils of the southeastern United States are examples of Ultisols.

Org	ganic Matter (%)	Percent Clay	Percent Sand	Ksat (mm/hr)	<u>рН (1:1 Н₂О)</u>	Kr Factor
ľ	.3 4 0cm	13 27 0cm	46 68	32 101	5.3 0cm	0.2 0.3
	51cm	51cm	51cm	51cm	51cm	51cm
	102cm	102cm	102cm	102cm	102cm	102cm
	152cm	152cm	152cm	152cm	152cm	152cm
Ľ	203cm	203cm	203cm	203cm	203cm	203cm

Coweeta LTER Soil Moisture and Precipitation

WC calculation differences between 218 and 318

Site Comparison:


Harvard:

- Spodosols and Inceptisols
- Hill slope

Area: 511,000 m² Elevation Difference: 108m

Coweeta:

- Ultisols
- Hill slope

Area: 123,587m² Elevation Difference: 230m

Error Incorporation

Errors:

- Evapotranspiration
- Water Storage Below Measurements
- Heterogeneous Soil Conditions
- Heterogeneous Precipitation
- Depression Filling
- Ponding
- Intense Precip/Low Conductivity
- Terrain aspect / Hillslope
- Low Measurement Density
- Low Accuracy of Measurements

<u>Future work</u>

Further Steps to complete this project

- Work more with the Coweeta LTER data set to establish refined budgets (at different flow volumes)

Current limits on Project

- Measurement density, and the exact locations of each measurement

Ideal Data Set Collection:

- Small watersheds key
- More extensive network
- Consideration of Hillslope and ET values
- Single storm event after dry period.

- Although this project did not yield the results I had expected and was MUCH more convoluted than I had originally imagined. It provided a greater insight into the degree the vadose zone plays in local hydrology and how difficult it is to measure quantities that can accurately describe a location larger then the measurement area itself.

Thank You