

The USGS Flood Inundation Mapping Initiative

USGS Texas Water Science Center Technical Talk

Scott Morlock

USGS Indiana Water Science Center

U.S. Department of the Interior U.S. Geological Survey

Leveraging Evolving Technologies

- Real-time and forecast hydrologic data
- LiDAR- DEMs
- GIS
- Internet
- Interactive flood map viewers

Flood Inundation Mapping Initiative

- 1. Consistent visual and electronic format for USGS inundation geospatial products.
- 2. Static flood inundation map libraries linked to gages/flood forecasts
- **3.** State-of-the art dynamic, real-time flood inundation applications
- **4.** A core of USGS and partner agencies
- **5.** National USGS FIMI Web portal

Products

- Designed to have consistent "look and feel," meet minimum USGS standards
- Designed for the broadest base of users
 - From "expert" to the general public
 - Fit multiple Fed, State, local missions
 - Served through multiple outlets

FIMI – partner oriented
State/local level, to leverage resources for inundation

e.g. State Silver Jackets

On a Federal level, getting the agencies to work together

- USGS
- NWS
- USACE
- FEMA
- Integrated Water Resources Science and Services (IWRSS)

FIMI Partner Vision

- Long term vision is to get appropriated dollars for a National flood inundation program.
- In the short term, the USGS initiative is relying on cooperative projects with partners:
 - Other federal agencies e.g. FEMA, DOD
 - State agencies transportation, water resource/environmental, emergency mgmt
 - Regional/local agencies counties, towns/cities, even an art museum!

Flood info – from a point on the landscape to geospatial products

High-water marks

USGS Real-time streamgage data

≥USGS

USGS 04189000 Blanchard River near F

USGS

12

http://las.depaul.edu/geography/imag es/Misc_Images/gis.jpg

National Weather Service flood forecasts

I.M. becomes a tool for flood.....

- Preparedness
 - "What-if" scenarios
- Response
 - Tied to gage & forecast data
- Recovery

≈USGS

- Damage assessment e.g. HAZUS-MH
- Mitigation & planning
 Flood risk analyses

Quality assurance, standard metadata, and consistent presentation of products

Goal – consistent "look and feel" to products, like USGS network data

[AIR TEMP: 20.9°F] [HUMIDITY: 70.0%] [BAR: 1025.7] [INTERNAL TEMP: +57.0]

USGS FIMI Focus Areas

Major flood documentation: highwater marks

- Static inundation map libraries at gages/flood forecast points
- Real-time, dynamic applications for the future

Major Flood Documentation

- In Cooperation with FEMA
- Many partners
- USGS report
- Flood causes, magnitudes, & impacts
- Peak profiles and inundation maps

In Cooperation with the Federal Emergency Management Agency and th Indiana Department of Natural Resources, Division of Water

Flood of June 7–9, 2008, in Central and Southe

Science for a changing work

In Cooperation With the Federal Emergency Management Agency and the Indiana Department of Natural Resources, Division of Water

Flood of September 2008 in Northwestern Indiana

Open-File

U.S. Departmo U.S. Geologic

Open-File Report 2010-1098

U.S. Department of the Interior U.S. Geological Survey

Static U. S. Geological Survey Inundation Map Libraries C PR-VI USGS NO ATMOSAL NOAA

USGS USGS streamgages: 8000 points

NWS AHPS: Advanced Hydrologic Prediction Service Flood Safety Awareness Week: March 17-22

- Forecast stage at flood forecast points
- Most collocated at **USGS** gages

http://www.weather.gov/ahps/

Society continues to build homes and businesses in floodplains which are vulnerable to flooding. This increases the need for more accurate and timely hydrologic information including flood and flash flood watches and warnings. See what the National Weather Service is doing to protect lives and property. Details... http://www.weather.gov/floodsafety/

Warnings & Graph Forecasts Foreca		cal sts	National Maps	Radar	Wa	ter	Air Quality	Satellite	Climate
River Observations		River Forecasts		B Precipi	Precipitation		er Download	Other Information	
All Locatio	ns	-		👻 Go	C	lick 1	The Map To Zo	oom in.	

Inundation-map Libraries

- DEMs + hydraulic model
- Gage/HWMK calibration data
- GIS generated maps
 bankfull-record stage
 Predefined map interval
 Linked to USGS realtime gage and NWS flood forecast

Static Libraries – served through AHPS

Flooded underpass, Beaumont, TX (photo courtesy of L. Roll/FEMA)

20 feet

LS TH

MAXWE

Ē

11

1371

GAR

Forecast Peak

FIMI File Formats

GIS

- Federal Geographical Data Committee (FGDC) compliant metadata
- KML/KMZ Keyhole Markup Language (Zip)
- PDF/JPG
- Available through FIMI Web Portal

Base from U.S. Genilopical Survey, variously scaled, 2007 Orbopholography from OReo Department of Administrative Description, Office of Internation Technology, Obio Canagogical profile Referenced Internation Program, Other Statewide Imagery Program, 2009 Bate Prese projectors, Chris International Program, Other Statewide Imagery Program, 2009 Bate Press program, School Program, School Program, School Program, 2009 Date Press, School Program, School Program, School Program, 2009 Bate Press, Program, School Program, School Program, 2009 Bate Press, Program, School Program, 2009 Bate Press, 200

EF Frond boundaries shown reflect unclastruched Boodleg of Sackweiter Hom zery, the Bia maas may be foodied if the many boccmass distributed or an a sensit of Boodleg thres thous large near hibitcaries of the Elianchard River should be particularly cautious due to added with the potential for Sacking from multiple associa.

Dynamic applications

- Real-time dynamic map applications run flood simulations and create maps "on the fly" during a flood
- Can provide flood extent, depth, & even arrival time and water speed
- State of the art, ultimate destination for FIMI

A floodpath Mapping a Flood...Before it Happens

Washington State – Snoqualmie River
NWS flow forecasts fed to hydraulic model
Model results GIS: flood timing, depth, etc.
Maps to Web serving software
Available soon after forecast issued
Updated every 6 hours
http://wa.water.usgs.gov/cgi/flood_snoqualmie.cgi 2005 CS

≊USGS

Snoqualmie Flood Path Viewer

≥USGS

Snoqualmie Flood Path Viewer

Example of exposure analysis

Exposure when forecast flood stage reaches 15 feet at Nisqually River at McKenna

- Residents 262
- Businesses 4
- Employees 49
- Business types school, campground, nonprofit organization, construction

• Land cover types:

Amount of land in flood hazard zone (sq. km)					
Open Water	0.1				
Developed, Open Space	0.2				
Developed, Low Intensity	0.1				
Developed, Medium Intensity	0.1				
Developed, High Intensity	0.0				
Barren Land (Rock/Sand/Clay)	0.2				
Deciduous Forest	0.3				
Evergreen Forest	0.4				
Mixed Forest	0.5				
Shrub/Scrub	0.1				
Grasslands/Herbaceous	0.3				
Pasture/Hay	0.1				
Cultivated Crops	0.0				
Emergent Herbaceous Wetlands	1.0				
Woody Wetlands	3.6				

Dotted white line denotes15-ft hazard zone

Web Portal

USGS Flood Inundation Mapping Science

home focus areas links contact internal

FLOOD-INUNDATION PROJECTS

Georgia

Flint River at Albany

Illinois

- Du Page County
- Lake County

Indiana

Flood of June 7-9, 2008

Kansas

* Cowskin Creek, Wichita

Missouri

 Upper Blue River, Indian Creek, and Dyke Branch

North Carolina

- LiDAR Applications, Tar River Basin
- Tar River Basin Mapping
- Tar River Basin Mapping (NOAA/NWS/AHPS)

Ohio

- Blanchard River, Findlay
- Blanchard River, Findlay (NOAA/NWS/AHPS) -

Washington

U.S. Geological Survey Flood Inundation Mapping Science

A powerful new tool for flood response and mitigation are digital geospatial flood-inundation maps that show flood water extent and depth on the land surface. Because floods are the leading cause of natural-disaster losses, the U.S. Geological Survey (USGS) is actively involved in the development of flood inundation mapping across the Nation pursuant to its major science strategy goal of reducing the vulnerability of the people and areas most at risk from natural hazards. Working with partners including

USGS Flood Inundation Mapping Science Focus Areas

- The USGS is working in the following focus areas for flood inundation mapping science:
- Flood documentation studies
- Static flood-inundation map libraries
- Real-time dynamic flood inundation mapping

the National Weather Service (NWS), U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), state agencies, local agencies, and universities, the USGS is providing flood inundation mapping science resources to help build more resilient communities.

USGS Flood Inundation Mapping Science Projects, by State

http://water.usgs.gov/osw/flood_inundation/

Flood-peak inundation areas for selected streams in Northwestern Indiana during the Flood of September 2008

Use the links below to download flood-inundation images and geospatial data. For each site, data is offered in three formats:

- JPG: Low resolution images (300 Kb)
- PDF: High resolution images (25-50 Mb)
- KMZ: Used by applications, as in Google Earth, to display geospatial data (8 Kb)

	JPG (low resolution)	PDF (high resolution)	KMZ *
Deep River near Hobart, Lake County	IPG	🔁 (50 Mb)	۲
Little Calumet River (east) near Hammond, Lake County	120	🔁 (45 Mb)	0
Little Calumet River (west) near Hammond, Lake County	IPG	🔁 (40 Mb)	0
Turkey Creek near Schererville, Lake	176	🔁 (25	9

GIS layers; ESRI raster and vector files, and associated metadata files (19 Mb ZIP file)

Products

- Broad-based and universal
- Useable for many outlets and applications
 - USGS Web Mapping Application
 - AHPS
 - HAZUS
 - Google Map
 - SAGE
 - USGS Web Mapping Application
 - National Map
 - FLEX viewers
 - Mobile Apps

USGS Web Mapping Application

WaterAlert

- WaterAlert allows you to receive test or email alerts
- Subscriber based
- You choose alert thresholds
- Works for any USGS realtime parameter
 - Stage
 - Streamflow
- Planning a FIMI tie in

≥USGS <u>http://water.usgs.gov/wateralert/</u>

Food for thought

- Flood maps not just for urban flooding
- Agricultural applications
 - IN project with USDA to map 7-day inundation areas for Wetland Reserve Program
- Ecological applications
 - MI Kalamazoo River Oil Spill

Next Steps

Map libraries - continue to add States and sites as resources allow (collaborative efforts)

Continue partner building

 Solidify Federal Tech Standards through IWRSS
 Work with FEMA e.g. HAZUS and Risk MAP

 National Hydrologic Warning Council meeting, San Diego, May 9-12

Mid- to long-term issues

- Uncertainty
- Coastal inundation
- Breach analysis/inundation

THANK YOU!

Scott Morlock 317-290-3333 x153 smorlock@usgs.gov

